Open Access
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Article Number 9
Number of page(s) 14
Published online 06 April 2018
  • Ahmadloo F., Asghari K., Renouf G. (2010) A new diagnostic tool for performance evaluation of heavy oil water floods: Case study of western canadian heavy oil reservoirs, SPE Western Regional Meeting, Anaheim, California, USA. [Google Scholar]
  • Al-Fattah S.M., Startzman R.A. (2001) Predicting natural-gas production using artificial neural network, SPE Hydrocarbon Economics and Evaluation Symposium, Dallas, Texas, USA. [Google Scholar]
  • Amirian E., Leung J.Y., ZanonS., Dzurman P. (2015) Integrated cluster analysis and artificial neural network modeling for steam-assisted gravity drainage performance prediction in heterogeneous reservoirs, Expert Syst. Appl. 42, 723–740. [CrossRef] [Google Scholar]
  • Archie G.E. (1942) The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. SPE-942054-G, Trans. AIME 146 [CrossRef] [Google Scholar]
  • Baker R.O., Fong C., Li T., Bowes C., Toews M. (2008) Practical considerations of reservoir heterogeneities on SAGD Projects, International Thermal Operations and Heavy Oil Symposium, October 20–23, Calgary, Alberta, Canada. [Google Scholar]
  • Bishop C.M. (1995) Neural networks for pattern recognition, Clarendon Press, Oxford. [Google Scholar]
  • Butler R.M. (1985) A new approach to the modeling of steam-assisted gravity drainage, J. Can. Pet. Technol. 24, 03, 42–51. [CrossRef] [Google Scholar]
  • Butler R.M., Mcnab G.S. (1981) Theoretical studies on the gravity drainage of heavy oil during in-situ steam heating, Can. J. Chem. Eng. 59, 04, 455–460. [CrossRef] [Google Scholar]
  • Chen Q., Gerritsen M.G., Kovscek A.R. (2008) Effects of reservoir heterogeneities on the steam-assisted gravity-drainage process, SPE Reserv. Eval. Eng. 11, 05, 921–932. [CrossRef] [Google Scholar]
  • Computer Modeling Group. 2013. STARS: Advanced Processes & Thermal Reservoir Simulator User's Guide (Version 2013), Computer Modeling Group Limited, Calgary, Alberta, Canada. [Google Scholar]
  • Dang C.T.Q., Nguyen N.T.B., Bae W., Nguyen H.X., Tu T., Chung T. (2010) Investigation of SAGD recovery process in complex reservoir, Paper Presented at Asia Pacific Oil and Gas Conference and Exhibition, 18–20 October, Brisbane, Queensland, Australia. [Google Scholar]
  • Deutsch C.V. (2002) Geostatistics reservoir modeling, Oxford University Press, Oxford, UK. [Google Scholar]
  • Deutsch C.V., Journel A.G. (1998) GSLIB. Geostatistical software library and user's guide, 2nd ed, Oxford University Press, New York. [Google Scholar]
  • Francis L. (2001) The basics of neural networks demystified, Contingencies, 11, 12, 56–61. [Google Scholar]
  • Hampton T., Kumar D., Azom P., Srinivasan S. (2013) Analysis of impact of thermal and permeability heterogeneity on SAGD performance using a semi-analytical approach, SPE Heavy Oil Conference, June 11–13, Calgary, Alberta, Canada. [Google Scholar]
  • Hassanpour M.M., Pyrcz M.J., Deutsch C.V. (2013) Improved geostatistical models of inclined heterolithic strata for McMurray formation, AAPG Bull. 97, 7, 1209–1224. [CrossRef] [Google Scholar]
  • Hubbard S.M., Smith D.G., Nielsen H., Leckie D.A., Fustic M., Spencer R.J., Bloom L. (2011) Seismic geomorphology and sedimentology of a tidally influenced river deposit, lower cretaceous Athabasca oil sands, Alberta, Canada, Am. Assoc. Pet. Geol. 95, 07, 1123–1145. [Google Scholar]
  • Ipek G., Frauenfeld T., Yuan J.Y. (2008) Numerical study of shale issues in SAGD, Canadian International Petroleum Conference, 17–19 June, Calgary, Alberta, Canada. [Google Scholar]
  • Joshi S.D., Threlkeld C.B. (1985) Laboratory studies of thermally aided gravity drainage using horizontal wells, ASOTRA J. Res. 2, 1, 11. [Google Scholar]
  • Karambeigi M.S., Zabihi R., Hekmat Z. (2011) Neuro-simulation modeling of chemical flooding, J. Pet. Sci. Eng. 78, 2, 208–219. [CrossRef] [Google Scholar]
  • Law D.H.-S., Nasr T.N., Goog W.K. (2003) Field-Scale numerical simulation of sagd process with top-water thief zone, J. Can. Pet. Technol. 42, 08, 32–38. [Google Scholar]
  • Ma Z., Leung J., Zanon S., Dzumann P. (2015) Practical implementation of knowledge-based approaches for SAGD production analysis, Expert Syst. Appl. 42, 21, 7326–7343. [CrossRef] [Google Scholar]
  • Ma Z., Leung Y., Zanon S. (2016) Integration of artificial intelligence and production data analysis for shale heterogeneity characterization in SAGD reservoirs, SPE Canada Heavy Oil Technical Conference, Calgary, Canada. [Google Scholar]
  • Masih S., Ma K., Sanchez J., Patino F., Boida L. (2012) The effect of bottom water coning and its monitoring for optimization in SAGD, SPE Heavy Oil Conference, 12–4 June, Calgary, Alberta, Canada. [Google Scholar]
  • MATLAB 2009. Version 7.9.0 (R2009b), Natick, Massachusetts, The MathWorks Inc. [Google Scholar]
  • McCoy D.D., Grieves W.A. (1997) Use of resistivity logs to calculate water saturation at Prudhoe bay, SPE Reserv. Eng. 12, 1, 45–51. [CrossRef] [Google Scholar]
  • Palacky G.J. (1987) Clay mapping using electromagnetic methods, First Break 5, 8, 295–306. [CrossRef] [Google Scholar]
  • Pooladi-Darvish M., Mattar L. (2002) SAGD operations in the presence of overlying gas cap and water layer − effect of shale layers, J. Can. Pet. Technol. 41, 06, 40–51. [CrossRef] [Google Scholar]
  • Popa S., Patel A. (2012) Neural networks for production curve pattern recognition applied to cyclic steam optimization in diatomite reservoirs, SPE Western Regional Meeting, March 21–23, Bakersfield, CA, USA. [Google Scholar]
  • Popa A.S., Cassidy S.D., Mercer M. (2011) A Data Mining Approach to Unlock Potential from an Old Heavy Oil Field, SPE Western North American Regional Meeting, May 7–11, Anchorage, Alaska, USA. [Google Scholar]
  • Queipo N.V., Goicochea J.V., Pintos S. (2002) Surrogate modeling-based optimization of SAGD process, J. Pet. Sci. Eng. 35, 1–2, 83–93. [CrossRef] [Google Scholar]
  • Ricardo M. (2013) Simulation sensitivity study and design parameters optimization of SAGD process, SPE Heavy Oil Conference, June 11–13, Calgary, Alberta, Canada. [Google Scholar]
  • Richardson J.G., Harris D.G., Rossen R.H., VanHee G. (1978) The effect of small, discontinuous shales on oil recovery, J. Pet. Technol. 30, 11, 1531–1537. [CrossRef] [Google Scholar]
  • Shahab M. (1995) Neural network: What it can do for petroleum engineers, SPE J. 47, 01, 42–42. [Google Scholar]
  • Shahab M. (2000) Virtual-Intelligence applications in petroleum engineering: Part 1-artificial neural networks, J. Pet. Technol. 52, 09, 64–73. [CrossRef] [Google Scholar]
  • Smith D.G., Hubbard S.M., Leckie D.A., Fustic M. (2009) Counter point bar deposits: Lithofacies and reservoir significane in the meandering modern peace river and ancient McMurray formation, Alberta, Canada, Int. Assoc. Sedim. 56, 1655–1669. [Google Scholar]
  • Wang C., Leung J. (2015) Characterizing the effects of lean zones and shale distribution in steam-assisted-gravity-drainage recovery performance, SPE Reserv. Eval. Eng. 18, 3, 329–345. [Google Scholar]
  • Webb A.C., Schroder-Adams C.J., Pedersen P.K. (2005). Regional subsurface correlations of Albian sequences north of the Peace river in NE British Columbia: northward extent of Sandstones of the Falher and Notikewin members along the eastern flank of the foredeep, Bull. Can. Pet. Geol. 53, 2, 168–188. [Google Scholar]
  • Weiss W.W., Balch R.S., Stubbs B.A. (2002) How artificial intelligence methods can forecast oil production, SPE/DOE Improved Oil Recovery Symposium, April 13–17, Tulsa, Oklahoma, USA. [Google Scholar]
  • Xu J.Z., Chen Z.X., Cao J.L., Li R. (2014a) Numerical study of the effects of lean zones on SAGD performance in periodically heterogeneous media, SPE Heavy Oil Conference, June 10–12, Calgary, Alberta, Canada. [Google Scholar]
  • Xu J.Z., Chen Z.X., Yu Y.G., Cao J.L. (2014b) Numerical thermal simulation and optimization of hybrid CSS/SAGD process in long lake with lean zones, SPE Heavy Oil Conference, June 10–12, Calgary, Alberta, Canada. [Google Scholar]
  • Yang G., Butler R.M. (1992) Effects of reservoir heterogeneities on heavy oil recovery by steam-assisted gravity drainage, J. Can. Pet. Technol. 31, 08, 37–43. [CrossRef] [Google Scholar]
  • Zerafat M.M., Ayatollahi S., Mehranbod N., Barzegari D. (2011) Bayesian network analysis as a tool for efficient EOR screening, SPE Enhanced Oil Recovery Conference, July 19–21, Kuala Lumpur, Malaysia. [Google Scholar]
  • Zupan J. (1994) Introduction to artificial neural network (ANN) methods: What they are and how to use them, Acta Chim. Slov. 41, 3, 327–352. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.