Dossier: LES4ICE'16: LES for Internal Combustion Engine Flows Conference
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 72, Number 6, November–December 2017
Dossier: LES4ICE'16: LES for Internal Combustion Engine Flows Conference
Article Number 38
Number of page(s) 10
DOI https://doi.org/10.2516/ogst/2017036
Published online 14 December 2017
  • Rutland C.J. (2011) Large-Eddy Simulations for internal combustion engines − A review, Int. J. Engine Res., 12, 5, 421-451. [CrossRef] [EDP Sciences] [Google Scholar]
  • Schiffmann P., Gupta S., Reuss D., Sick V., Yang X., Kuo T.-W. (2016) TCC3-Engine benchmark for large eddy simulation of IC engine flows, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles, 71, 3, 1-27. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kuo T.-W., Yang X., Gopalakrishnan V., Chen Z. (2014) Large-Eddy Simulation (LES) for IC engine flows, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles, 69, 1, 61-81. [CrossRef] [Google Scholar]
  • Liu K., Haworth D.C., Yang X., Gopalakrishnan V. (2013) Large-Eddy Simulation of motored flow in a two-valve piston engine: Pod analysis and cycle-to-cycle variations, Flow Turbul. Combust., 91, 373-403. [CrossRef] [Google Scholar]
  • Abraham P., Yang X., Gupta S., Kuo T.-W., Reuss D., Sick V. (2015) Flow-pattern switching in a motored spark ignition engine, Int. J. Engine Res., 16, 3, 323-339. [CrossRef] [Google Scholar]
  • Buhl S., Hartmann F., Hasse C. (2015) A dynamic one-equation non-viscosity LES model, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles, DOI:10.2516/ogst/2015021. [Google Scholar]
  • Zentgraf F., Baum E., Böhm B., Dreizler A., Peterson B. (2016) On the turbulent flow in piston engines: Coupling of statistical theory quantities and instantaneous turbulence, Phys. Fluids, 28, 045108. [CrossRef] [Google Scholar]
  • Yang X., Gupta S., Kuo T.-W., Gopalakrishnan V. (2014) Rans and les of IC engine flows − A comparative study, J. Eng. Gas Turbines Power, 136, 5, 051507-1-051507-9. [Google Scholar]
  • Yang X., Keum S., Kuo T.-W. (2016) Effect of valve opening/closing setup on CFD prediction of engine flows, J. Eng. Gas Turbines Power, 138, 8, 081503-1–081503-16. [CrossRef] [Google Scholar]
  • Richards K.J., Senecal P.K., Pomraning E. (2013) CONVERGE 2.1.0 Theory Manual, A three-dimensional computational fluid dynamics program for transient or steady state flow with complex geometries, Converg. Sci. Inc., 1-442. [Google Scholar]
  • Senecal P.K., Richards K.J., Pomraning E., Yang T., Dai M.Z., Dai McDavid R.M., Patterson M.A., Hou S., Shethaji T. (2007) A new parallel cut-cell cartesian CFD code for rapid grid generation applied to in-cylinder diesel engine simulations, SAE Technical Paper 2007-01-0159. [Google Scholar]
  • Rhie C.M., Chow W.L. (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA J., 21, 1525-1532. [NASA ADS] [CrossRef] [Google Scholar]
  • Issa R.I. (1986) Solution of the implicitly discretised fluid flow equations by operator-splitting, J. Comput. Phys., 62, 1, 40-65. [CrossRef] [Google Scholar]
  • Pomraning E., Rutland C.J. (2002) A dynamic one-equation non-viscosity LES model, AIAA J., 40, 4, 689-701. [CrossRef] [Google Scholar]
  • Werner H., Wengle H. (1991) Large-Eddy Simulation of turbulent flow over and around a cube in a plane channel, in: Proceedings of the Eighth Symposium on Turbulent Shear Flows, Vol. 2, pp. 1941-1946. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.