Dossier: LES4ICE'16: LES for Internal Combustion Engine Flows Conference
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 72, Numéro 6, November–December 2017
Dossier: LES4ICE'16: LES for Internal Combustion Engine Flows Conference
Numéro d'article 38
Nombre de pages 10
DOI https://doi.org/10.2516/ogst/2017036
Publié en ligne 14 décembre 2017
  • Rutland C.J. (2011) Large-Eddy Simulations for internal combustion engines − A review, Int. J. Engine Res., 12, 5, 421-451. [Google Scholar]
  • Schiffmann P., Gupta S., Reuss D., Sick V., Yang X., Kuo T.-W. (2016) TCC3-Engine benchmark for large eddy simulation of IC engine flows, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles, 71, 3, 1-27. [Google Scholar]
  • Kuo T.-W., Yang X., Gopalakrishnan V., Chen Z. (2014) Large-Eddy Simulation (LES) for IC engine flows, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles, 69, 1, 61-81. [Google Scholar]
  • Liu K., Haworth D.C., Yang X., Gopalakrishnan V. (2013) Large-Eddy Simulation of motored flow in a two-valve piston engine: Pod analysis and cycle-to-cycle variations, Flow Turbul. Combust., 91, 373-403. [CrossRef] [Google Scholar]
  • Abraham P., Yang X., Gupta S., Kuo T.-W., Reuss D., Sick V. (2015) Flow-pattern switching in a motored spark ignition engine, Int. J. Engine Res., 16, 3, 323-339. [CrossRef] [Google Scholar]
  • Buhl S., Hartmann F., Hasse C. (2015) A dynamic one-equation non-viscosity LES model, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles, DOI:10.2516/ogst/2015021. [Google Scholar]
  • Zentgraf F., Baum E., Böhm B., Dreizler A., Peterson B. (2016) On the turbulent flow in piston engines: Coupling of statistical theory quantities and instantaneous turbulence, Phys. Fluids, 28, 045108. [CrossRef] [Google Scholar]
  • Yang X., Gupta S., Kuo T.-W., Gopalakrishnan V. (2014) Rans and les of IC engine flows − A comparative study, J. Eng. Gas Turbines Power, 136, 5, 051507-1-051507-9. [Google Scholar]
  • Yang X., Keum S., Kuo T.-W. (2016) Effect of valve opening/closing setup on CFD prediction of engine flows, J. Eng. Gas Turbines Power, 138, 8, 081503-1–081503-16. [CrossRef] [Google Scholar]
  • Richards K.J., Senecal P.K., Pomraning E. (2013) CONVERGE 2.1.0 Theory Manual, A three-dimensional computational fluid dynamics program for transient or steady state flow with complex geometries, Converg. Sci. Inc., 1-442. [Google Scholar]
  • Senecal P.K., Richards K.J., Pomraning E., Yang T., Dai M.Z., Dai McDavid R.M., Patterson M.A., Hou S., Shethaji T. (2007) A new parallel cut-cell cartesian CFD code for rapid grid generation applied to in-cylinder diesel engine simulations, SAE Technical Paper 2007-01-0159. [Google Scholar]
  • Rhie C.M., Chow W.L. (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA J., 21, 1525-1532. [NASA ADS] [CrossRef] [Google Scholar]
  • Issa R.I. (1986) Solution of the implicitly discretised fluid flow equations by operator-splitting, J. Comput. Phys., 62, 1, 40-65. [NASA ADS] [CrossRef] [Google Scholar]
  • Pomraning E., Rutland C.J. (2002) A dynamic one-equation non-viscosity LES model, AIAA J., 40, 4, 689-701. [CrossRef] [Google Scholar]
  • Werner H., Wengle H. (1991) Large-Eddy Simulation of turbulent flow over and around a cube in a plane channel, in: Proceedings of the Eighth Symposium on Turbulent Shear Flows, Vol. 2, pp. 1941-1946. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.