Dossier: SimRace 2015: Numerical Methods and High Performance Computing for Industrial Fluid Flows
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 5, September–October 2016
Dossier: SimRace 2015: Numerical Methods and High Performance Computing for Industrial Fluid Flows
Article Number 61
Number of page(s) 25
Published online 20 September 2016
  • Hirt C.W., Amsden A.A., Cook J.L. (1974) An arbitrary lagrangian-eulerian computing method for all flow speeds, Journal of Computational Physics 14, 3, 227–253. [Google Scholar]
  • Harlow F., Welch J.E. (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Physics of Fluid 8, 12, 2182–2189. [Google Scholar]
  • Le Chenadec V., Pitsch H. (2013) A 3D unsplit forward/backward volume-of-fluid approach and coupling to the level set method, Journal of Computational Physics 233, 10–33. [CrossRef] [Google Scholar]
  • Emre O. (2014) Modélisation de la polydispersion des brouillards de gouttes sous l’effet des interactions two-way turbulentes pour l’injection directe à haute pression dans les moteurs. PhD Thesis, École Centrale Paris, Available at [Google Scholar]
  • Lebas R., Menard T., Beau P.A., Berlemont A., De-moulin F.X. (2009) Numerical simulation of primary break-up and atomization: DNS and modelling study, Int. J. Multiphase Flows 35, 3, 247–260. [CrossRef] [Google Scholar]
  • Menard T., Tanguy S., Berlemont A. (2007) Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet, International Journal of Multiphase Flow 33, 5, 510–524. [CrossRef] [Google Scholar]
  • Saurel R., Lemetayer O. (2001) A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation, Journal of Fluid Mechanics 431, 2, 239–271. [CrossRef] [Google Scholar]
  • Drew D.A., Passman S.L. (1999) Theory of multicomponent fluids, Appl. Math. Sci. 135. [Google Scholar]
  • Baer M.R., Nunziato J.W. (1986) A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, International Journal of Multiphase Flow 12, 6, 861–889. [CrossRef] [Google Scholar]
  • Drui F., Kokh S., Larat A., Massot M. (2016) A hierarchy of simple hyperbolic two-fluid models for bubbly flows, Submitted to Physics of Fluids, pp. 1–40. [Google Scholar]
  • Le Martelot S., Saurel R., Nkonga B. (2014) Towards the direct numerical simulation of nucleate boiling flows, International Journal of Multiphase Flow 66, 62–78. [CrossRef] [MathSciNet] [Google Scholar]
  • Le Touze C. (2015) Coupling between separated and dispersed two-phase flow models for the simulation of primary atomization in cryogenic combustion, Theses, Universite Nice Sophia Antipolis, December. URL [Google Scholar]
  • Drui F., Fikl A., Kestener P., Kokh S., Larat A., Le Chenadec V., Massot M. (2016) Experimenting with the p4est library for AMR simulations of two-phase flows. to appear in ESAIM: Proceedings and Surveys, pp. 1–16. [Google Scholar]
  • Saurel R., Abgrall R. (1999) A multiphase godunov method for compressible multifluid and multiphase flows, Journal of Computational Physics 150, 2, 425–467. [CrossRef] [MathSciNet] [Google Scholar]
  • Saurel R., Petitpas F., Berry R.A. (2009) Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures, Journal of Computational Physics 228, 1678–1712. [Google Scholar]
  • Jay S., Lacas F., Candel S. (2006) Combined surface density concepts for dense spray combustion, Combustion and Flame 144, 3, 558–577. [CrossRef] [Google Scholar]
  • Vallet A., Burluka A., Borghi R. (2001) Development of a eulerian model for the “atomization” of a liquid jet, Atomization and Sprays 11, 619–642. [CrossRef] [Google Scholar]
  • Williams F.A. (1958) Spray combustion and atomization, Physics of Fluids 1, 541–545. [CrossRef] [Google Scholar]
  • Bird G.A. (1994) Molecular gas dynamics and the direct simulation of gas flows, Oxford Science Publications, 42. [Google Scholar]
  • Garcia M. (2009) Development and validation of the Euler- Lagrange formulation on a parallel and unstructured solver for large-eddy simulation, PhD Thesis, Université Toulouse III, Available online at [Google Scholar]
  • Kah D. (2010) Taking into account polydispersity in the framework of a coupled Euler-Lagrange approach for the modeling of liquid fuel injection in internal combustion engines, PhD Thesis, École Centrale de Paris, Available online at [Google Scholar]
  • Greenberg J.B., Silverman I., Tambour Y. (1993) On the origin of spray sectional conservation equations, Combustion and Flame 93, 90–96. [CrossRef] [Google Scholar]
  • Laurent F., Massot M. (2001) Multi-fluid modeling of laminar poly-dispersed spray flames: origin, assumptions and comparison of the sectional and sampling methods, Combust, Theory and Modelling 5, 537–572. [CrossRef] [Google Scholar]
  • Emre O., Kah D., Jay S., Tran Q.-H., Velghe A., De Chaisemartin S., Laurent F., Massot M. (2015) Eulerian Moment Methods for Automotive Sprays, Atomization and Sprays 25, 189–254. [CrossRef] [Google Scholar]
  • Kah D., Emre O., Tran Q.-H., de Chaisemartin S., Jay S., Laurent F., Massot M. (2015) High order moment method for polydisperse evaporating spray with mesh movement: application to internal combustion engines, International Journal of Multiphase Flows 71, 38–65. [CrossRef] [Google Scholar]
  • Nguyen T.T., Laurent F., Fox R.O., Massot M. Solution of population balance equations in applications with fine particles: mathematical modeling and numerical schemes, Journal of Computational Physics, pp. 1–42. URL Submitted. [Google Scholar]
  • Kah D., Laurent F., Massot M., Jay S. (2012) A high order moment method simulating evaporation and advection of a polydisperse spray, J. Comput. Phys. 231, 2, 394–422. [CrossRef] [Google Scholar]
  • Laurent F. (2006) Numerical analysis of eulerian multi-fluid models in the context of kinetic formulations for dilute evaporating sprays, Mathematical Modeling and Numerical Analysis 3, 431–468. [CrossRef] [EDP Sciences] [Google Scholar]
  • Laurent F., Sibra A., Doisneau F. (2016) Two-size moment Eulerian multi-fluid model: a flexible and realizable high-fidelity description of polydisperse moderately dense evaporating sprays, Communications in Computational Physics, pp. 1–42, URL Accepted. [Google Scholar]
  • Massot M., Laurent F., Kah D., de Chaisemartin S. (2010) A robust moment method for evaluation of the disappearance rate of evaporating sprays, SIAM J. Appl. Math. 70, 3203–3234. [CrossRef] [Google Scholar]
  • Vié A., Laurent F., Massot M. (2013) Size-velocity correlations in high order moment methods for polydisperse evaporating sprays: modeling and numerical issues, J. Comp. Phys. 237, 277–310. [Google Scholar]
  • Emre O., Fox R.O., Massot M., de Chaisemartin S., Jay S., Laurent F. (2014) Towards eulerian modeling of a polydisperse evaporating spray under realistic internal-combustion-engine conditions, Flow, Turbulence and Combustion 93, 689–722. [CrossRef] [Google Scholar]
  • Devassy M.B., Habchi C., Danoem E. (2015) Atomization modelling of liquid jets using a two-surface-density approach, Journal of Atomization and Sprays 25, 1, 47–80. [CrossRef] [Google Scholar]
  • Sibra A. (2015) Eulerian Multi-Fluid modeling and simulation of evaporation and combustion of polydisperse sprays in solid rocket motors, Theses, Université Paris-Saclay, November. URL [Google Scholar]
  • Essadki M., de Chaisemartin S., Laurent F., Larat A., Massot M. (2016) Topological moment model for polydisperse evaporating sprays, Submitted to SIAM Journal on Applied Mathematics. [Google Scholar]
  • Drew D.A. (1990) Evolution of geometric statistics, SIAM J. Appl. Math. 50, 3, 649–666. [CrossRef] [Google Scholar]
  • Burstedde C., Wilcox L.C., Ghattas O. (2011) p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM Journal on Scientific Computing 33, 3, 1103–1133. [Google Scholar]
  • Sabat M. (2016) Eulerian modeling and numerical methods for the description of turbulent polydisperse sprays, PhD Thesis, Université Paris-Saclay, CentraleSupélec. [Google Scholar]
  • Godsave G.A.E. (1953) Studies of the combustion of drops in a fuel spray: the burning of single drops of fuel, Proceedings of the 4th Symp. (International) on Combustion, The Comb. Institute, Baltimore, pp. 818–830. [Google Scholar]
  • de Chaisemartin S. (2009) Eulerian models and numerical simulation of turbulent dispersion for polydisperse evaporation sprays, PhD Thesis, École Centrale Paris, France, Available on TEL: [Google Scholar]
  • Vié A., Doisneau F., Massot M. (2015) On the Anisotropic Gaussian closure for the prediction of inertial-particle laden flows, Communication in Computational Physics 17, 1, 1–46. [CrossRef] [Google Scholar]
  • de Chaisemartin S., Fréret L., Kah D., Laurent F., Fox R.O., Reveillon J., Massot M. (2009) Eulerian models for turbulent spray combustion with polydispersity and droplet crossing, Comptes Rendus Mécanique 337, 438–448, Special Issue ‘Combustion for Aerospace Propulsion’. [CrossRef] [Google Scholar]
  • Mead L.R., Papanicolaou N. (1984) Maximum entropy in the problem of moments, J. Math. Phys. 25, 8, 2404–2417. ISSN 0022-2488. [NASA ADS] [CrossRef] [Google Scholar]
  • Descombes S., Massot M. (2004) Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: singular perturbation and order reduction, Numer. Math. 97, 4, 667–698. [CrossRef] [MathSciNet] [Google Scholar]
  • Bouchut F., Jin S., Li X. (2003) Numerical approximations of pressureless and isothermal gas dynamics, SIAM J. Num. Anal. 41, 135–158. [CrossRef] [Google Scholar]
  • Gordon R.G. (1968) Error bounds in equilibrium statistical mechanics, Journal of Mathematical Physics 9, 655–663. [CrossRef] [Google Scholar]
  • Adams M., Colella P., Graves D.T., Johnson J.N., Keen N.D., Ligocki T.J., Martin D.F., McCorquodale P.W., Modiano D., Schwartz P.O., Sternberg T.D., Van Straalen B. (2013) Chombo software package for amr applications - design document. Technical Report LBNL-6616E, Lawrence Berkeley National Laboratory. [Google Scholar]
  • Morton G.M. (1966) A computer oriented geodetic data base and a new technique in file sequencing. Technical report, Ottawa, Ontario, Canada. [Google Scholar]
  • Müller S. (2003) Adaptive Multiscale Schemes for Conservation Laws, Springer. [CrossRef] [Google Scholar]
  • Harten A. (1995) Multiresolution algorithms for the numerical solution of hyperbolic conservation laws, Communication on Pure Applied Mathematics 48, 1305–1342. [CrossRef] [MathSciNet] [Google Scholar]
  • Duarte M. (2011) Adaptive numerical methods in time and space for the simulation ofmulti-scale reaction fronts, PhD Thesis, École Centrale de Paris. Available online at [Google Scholar]
  • Sabat M., Larat A., Vié A., Massot M. (2014) On the development of high order realizable schemes for the Eulerian simulation of disperse phase flows: a convex-state preserving Discontinuous Galerkin method, Journal of Computational Multiphase Flows 6, 3, 247–270. [CrossRef] [MathSciNet] [Google Scholar]
  • Reveillon J., Demoulin F.X. (2007) Effects of the preferential segregation of droplets on evaporation and turbulent mixing, Journal of Fluid Mechanics 583, 273–302. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.