Dossier: Characterisation and Modeling of Low Permeability Media and Nanoporous Materials
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 4, Juillet–Août 2016
Dossier: Characterisation and Modeling of Low Permeability Media and Nanoporous Materials
Article Number 52
Number of page(s) 9
DOI https://doi.org/10.2516/ogst/2016003
Published online 23 June 2016
  • Bignonnet F., Dormieux L. (2014) FFT-based bounds on the permeability of complex microstructures, International Journal of Numerical and Analytical Methods in Geomechanics 38, 16, 1707–1723. [CrossRef] [Google Scholar]
  • Monchiet V., Bonnet G., Lauriat G. (2009) A FFT-based method to compute the permeability induced by a Stokes slip flow through a porous medium, Comptes Rendus Mécanique 337, 4, 192–197. [CrossRef] [Google Scholar]
  • Wiegman A. (2007) Computation of the permeability of porous materials from their microstructure by FFT-Stokes, Report of the Fraunhofer ITWM 129, http://kluedo.ub.uni-kl.de/files/1984/bericht129.pdf, accessed 22 July 2015. [Google Scholar]
  • Gervais P.C., Bardin-Monnier N., Thomas D. (2012) Permeability modeling of fibrous media with bimodal fiber size distribution, Chemical Engineering Science 73, 239–248. [CrossRef] [Google Scholar]
  • Rief S., Latz A., Wiegmann A. (2006) Computer simulation of air filtration including electric surface charges in three-dimensional fibrous micro structures, Filtration 6, 2, 169–172. [Google Scholar]
  • Redenbach C., Wirjadi O., Rief S., Wiegmann A. (2011) Modeling a ceramic foam for filtration simulation, Advanced Engineering Materials 13, 3, 171–177. [CrossRef] [Google Scholar]
  • Masson D., Abdallah B., Willot F., Jeulin D., Mercadelli E., Sanson A., Chesnaud A., Thorel A. (2015) Morphological modeling of a metal foam SOFC configuration, ECS Transactions 68, 1, 2951–2960. [CrossRef] [Google Scholar]
  • Carman P.C. (1937) Fluid flow through granular beds, Transactions-Institution of Chemical Engineers 15, 150–166. [Google Scholar]
  • Kozeny J. (1927) Ueber kapillare leitung des wassers im boden, Sitzungsber Akad Wiss Wien 136, 271–306. [Google Scholar]
  • Doi M. (1976) A new variational approach to the diffusion and the flow problem in porous media, Journal of the Physical Society of Japan 40, 2, 567–572. [CrossRef] [Google Scholar]
  • Torquato S., Lu B. (1990) Rigorous bounds on the fluid permeability: Effect of polydispersivity in grain size, Physics of Fluids A: Fluid Dynamics 2, 4, 487–490. [CrossRef] [Google Scholar]
  • Rubinstein J., Torquato S. (1989) Flow in random porous media: mathematical formulation, variational principles, and rigorous bounds, Journal of Fluid Mechanics 206, 25–46. [CrossRef] [Google Scholar]
  • Martys N.S., Torquato S., Bentz D.P. (1994) Universal scaling of fluid permeability for sphere packings, Physical Review E 50, 1, 403. [CrossRef] [Google Scholar]
  • Abdallah B., Willot F., Jeulin D. (2015) Stokes flow through a Boolean model of spheres: Representative volume element, Transport in Porous Media 109, 3, 711–726. [CrossRef] [Google Scholar]
  • Martin J.J., McCabe L.W., Monrad C.C. (1951) Pressure drop through stacked spheres. Effect of orientation, Chemical Engineering Progress 47, 2, 91–94. [Google Scholar]
  • Richardson F.J., Zaki W.N. (1954) The sedimentation of a suspension of uniform spheres under conditions of viscous flow, Chemical Engineering Science 3, 2, 65–73. [CrossRef] [Google Scholar]
  • Shahmardan M.M., Nazari M., Khaksar M., Khatib M. (2013) A new mathematical model for permeability of composites, Journal of Solid Mechanics 5, 4, 371–379. [Google Scholar]
  • Tamayol A., Bahrami M. (2009) Analytical determination of viscous permeability of fibrous porous media, International Journal of Heat and Mass Transfer 52, 9, 2407–2414. [CrossRef] [Google Scholar]
  • Yazdchi K., Srivastava S., Luding S. (2011) Microstructural effects on the permeability of periodic fibrous porous media, International Journal of Multiphase Flow 37, 8, 956–966. [CrossRef] [Google Scholar]
  • Jackson G.W., James D.F. (1986) The permeability of fibrous porous media, The Canadian Journal of Chemical Engineering 64, 3, 364–374. [CrossRef] [Google Scholar]
  • Clague D.S., Kandhai B.D., Zhang R., Sloot P.M.A. (2000) Hydraulic permeability of (un)bounded fibrous media using the lattice Boltzmann method, Physical Review E 61, 1, 616. [CrossRef] [Google Scholar]
  • Koponen A., Kandhai D., Hellen E., Alava M., Hoekstra A., Kataja M., Niskanen K., Sloot P., Timonen J. (1998) Permeability of three-dimensional random fiber webs, Physical Review Letters 80, 4, 716. [CrossRef] [Google Scholar]
  • Claeys I.L., Brady J.F. (1993) Suspensions of prolate spheroids in Stokes flow. Part 2. Statistically homogeneous dispersions, Journal of Fluid Mechanics 251, 443–477. [CrossRef] [Google Scholar]
  • Thomas M.L.R., Ingham D.B., Pourkashanian M. (2010) Prediction of the permeability of fibrous porous media using the lattice Boltzmann method in conjuction with coarse numerical lattices, Open Transport Phenomena Journal 2, 80–89. [Google Scholar]
  • Nabovati A., Llewellin E.W., Sousa A.C.M. (2009) A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method, Composites Part A: Applied Science and Manufacturing 40, 6, 860–869. [CrossRef] [Google Scholar]
  • Gebart B.R. (1992) Permeability of unidirectional reinforcements for RTM, Journal of Composite Materials 26, 8, 1100–1133. [CrossRef] [Google Scholar]
  • Clavier R., Chikhi N., Fichot F., Quintard M. (2015) Experimental investigation on single-phase pressure losses in nuclear debris beds: Identification of flow regimes and effective diameter, Nuclear Engineering and Design 292, 222–236. [CrossRef] [Google Scholar]
  • Matheron G. (1979) L’émergence de la loi de Darcy, École Nationale Supérieure des Mines, Note Géostatistique No. 592, www.cg.ensmp.fr/bibliotheque/public/MATHERON_Rapport_00216.pdf, accessed August 21, 2015. [Google Scholar]
  • Koudina N., Garcia R.G., Thovert J.F., Adler P.M. (1998) Permeability of three-dimensional fracture networks, Physical Review E 57, 4, 4466. [CrossRef] [Google Scholar]
  • Lang P.S., Paluszny A., Zimmerman R.W. (2014) Permeability tensor of three-dimensional fractured porous rock and a comparison to trace map predictions, Journal of Geophysical Research: Solid Earth 119, 8, 6288–6307. [CrossRef] [Google Scholar]
  • Berkowitz B. (2002) Characterizing flow and transport in fractured geological media: A review, Advances in Water Resources 25, 8–12, 861–884. [CrossRef] [Google Scholar]
  • Mourzenko V.V., Thovert J.F., Adler P.M. (2004) Macroscopic permeability of three-dimensional fracture networks with power-law size distribution, Physical Review E 69, 6, 066307. [CrossRef] [Google Scholar]
  • Matheron G. (1972) Random sets theory and its applications to stereology, Journal of Microscopy 95, 1, 15–23. [CrossRef] [Google Scholar]
  • Miles R.E. (1970) On the homogeneous planar Poisson point process, Mathematical Biosciences 6, 85–127. [CrossRef] [MathSciNet] [Google Scholar]
  • Jeulin D., Moreaud M. (2011) Percolation of random cylinder aggregates, Image Analysis & Stereology 26, 3, 121–127. [CrossRef] [Google Scholar]
  • Garboczi E.J., Snyder K.A., Douglas J.F., Thorpe M.F. (1995) Geometrical percolation threshold of overlapping ellipsoids, Physical Review E 52, 1, 819. [CrossRef] [Google Scholar]
  • Huseby O., Thovert J.F., Adler P.M. (1997) Geometry and topology of fracture systems, Journal of Physics A: Mathematical and General 30, 5, 1415. [CrossRef] [MathSciNet] [Google Scholar]
  • Ene H.I., Sanchez-Palencia E. (1975) Équations et phénomènes de surface pour l’écoulement dans un modèle de milieu poreux, Journal de Mécanique 14, 1, 73–108. [Google Scholar]
  • Matheron G. (1975) Random sets and integral geometry, Wiley, New-York. [Google Scholar]
  • Willot F. (2016) Mean covariogram of a cylinder and applications to Boolean random sets, Journal of Contemporary Mathematical Analysis, In Press. [Google Scholar]
  • Jeulin D. (1991) Modèles de fonctions aléatoires multivariables, Sciences de la Terre 30, 225–256. [Google Scholar]
  • Jeulin D. (1991) Modèles Morphologiques de Structures Aléatoires et de Changement d’Échelle, PhD Thesis, Université de Caen. [Google Scholar]
  • Rubinstein J., Torquato S. (1988) Diffusion-controlled reactions: Mathematical formulation, variational principles, and rigorous bounds, The Journal of Chemical Physics 88, 10, 6372–6380. [CrossRef] [Google Scholar]
  • Torquato S. (1986) Microstructure characterization and bulk properties of disordered two-phase media, Journal of Statistical Physics 45, 5–6, 843–873. [CrossRef] [Google Scholar]
  • Gille W. (1987) The intercept length distribution density of a cylinder of revolution, Experimentelle Technik der Physik 35, 2, 93–98. [Google Scholar]
  • Berryman J.G., Milton G.W. (1985) Normalization constraint for variational bounds on fluid permeability, The Journal of Chemical Physics 83, 2, 754–760. [CrossRef] [Google Scholar]
  • Childress S. (1972) Viscous flow past a random array of spheres, The Journal of Chemical Physics 56, 6, 2527–2539. [CrossRef] [Google Scholar]
  • Brady J.F., Bossis G. (1988) Stokesian dynamics, Annual Review of Fluid Mechanics 20, 111–157. [CrossRef] [Google Scholar]
  • Tam C.K.W. (1969) The drag on a cloud of spherical particles in low Reynolds number flow, Journal of Fluid Mechanics 38, 3, 537–546. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.