Dossier: Characterisation and Modeling of Low Permeability Media and Nanoporous Materials
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 4, Juillet–Août 2016
Dossier: Characterisation and Modeling of Low Permeability Media and Nanoporous Materials
Article Number 53
Number of page(s) 16
DOI https://doi.org/10.2516/ogst/2015039
Published online 23 June 2016
  • Aldea C.-M., Shah S.P., Karr A. (1999) Permeability of cracked concrete, Materials and Structures/Matériaux et Constructions 32, 370–376. [Google Scholar]
  • Alonso E., Gens A. (Eds.) (2002) Key Issues in Waste Isolation Research, Engng. Geol. 64, 89–316. [Google Scholar]
  • Alonso E.E., Alcoverro J., Coste F., Malinsky L., Merrien-Soukatchoff V., Kadiri I., Nowak T., Shao H., Nguyen T.S., Selvadurai A.P.S., Armand G., Sobolik S.R., Itamura M., Stone C.M., Webb S.W., Rajeb A., Tijani M., Maouche Z., Kobayashi A., Huikami H., Ito A., Sugita Y., Chijimatsu M., Borgesson L., Hernelind J., Rutqvist J., Tsang C.F., Jussia P. (2005) The FEBEX Benchmark Test: Case definition and comparison of modelling approaches, International Journal of Rock Mechanics and Mining Sciences 42, 611–638. [CrossRef] [Google Scholar]
  • Atkin R.J., Craine R.E. (1976) Continuum Theories of Mixtures: Basic Theory and Historical Development, Quarterly Journal of Mechanics and Applied Mathematics 29, 209–244. [CrossRef] [MathSciNet] [Google Scholar]
  • Bear J. (1972) Dynamics of Fluids in Porous Media, Dover Publications, New York. [Google Scholar]
  • Bernaix J. (1969) New Laboratory Methods of Studying the Mechanical Properties of Rocks, International Journal of Rock Mechanics and Mining Science 6, 43–90. [CrossRef] [Google Scholar]
  • Beauheim R.L., Roberts R.M., Avis J.D. (2014) Hydraulic Testing of Low-Permeability Silurian and Ordovician Strata, Michigan Basin, Southwest Ontario, Journal of Hydrology 509, 163–178. [CrossRef] [Google Scholar]
  • Biot M.A. (1941) General Theory of Three-Dimensional Consolidation, Journal of Applied Physics 12, 155–164. [Google Scholar]
  • Bock H., Dehandschutter B., Martin C.D., Mazurek M., de Haller, A., Skoczylas F., Davy C. (2010) Self-Sealing of Fractures in Argillaceous Formations in Context with the Geological Disposal of Radioactive Waste - Review and Synthesis, OECD, NEA, No. 6184, Nuclear Energy Agency, Paris, France. [Google Scholar]
  • Bowen R.M. (1976) Theory of Mixtures, in Continuum Physics, Eringen A.C. (ed.), Academic Press, New York-London. [Google Scholar]
  • Brace W.F., Walsh J.B., Frangos W.T. (1968) Permeability of Granite under High Pressure, Journal of Geophysical Research 73, 2225–2236. [CrossRef] [Google Scholar]
  • Coussy O. (1995) Mechanics of Porous Continua, John Wiley & Sons, Chichester. [Google Scholar]
  • David C. (1993) Geometry of Flow Paths for Fluid Transport in Rocks, Journal of Geophysical Research 98, B7, 12267–12278. [CrossRef] [Google Scholar]
  • David C., Darot M. (1989) Permeability and Conductivity of Sandstones, in Proceedings of the Rock at Great Depth Symposium, Maury V, Fourmaintraux D. (eds), A.A Balkema, 1:203–209. [Google Scholar]
  • David C., Wong T.-F., Zhu W., Zhang J. (1994) Laboratory Measurement of Compaction-Induced Permeability Change in Porous Rocks: Implications for the Generation and Maintenance of Pore Pressure Excess in the Crust, Pure and Applied Geophysics 143, 425–456. [CrossRef] [Google Scholar]
  • Davy C., Skoczylas F., Barnichon J.-D., Lebon P. (2007) Permeability of Macro-Cracked Argillite Under Confinement: Gas and Water Testing, Physics and Chemistry of the Earth 32, 667–680. [CrossRef] [Google Scholar]
  • Davy C., Skoczylas F., Lebon P., Dubois T. (2009) Gas Migration Properties through a Bentonite/Argillite Interface, Applied Clay Science 42, 639–648. [CrossRef] [Google Scholar]
  • Fuenkajorn K., Daemen J.K.K. (1996) Sealing of Boreholes and Underground Excavations, Springer-Verlag, Berlin. [CrossRef] [Google Scholar]
  • Gens A. (2011) Soil-Environment Interaction in Geotechnical Engineering, Géotechnique 60, 3–74. [Google Scholar]
  • Golder Associates (2003) Low Level Waste Geotechnical Feasibility Study - Western Waste Management Facility Bruce Site, Tiverton, Ontario, Report to Ontario Power Generation. [Google Scholar]
  • Golfier F., Lasseux D., Quintard M. (2015) Investigation of the permeability of vuggy or fractured porous media from a Darcy-Brinkman approach, Computational Geosciences 19, 63–78. [Google Scholar]
  • Green A.E., Naghdi P.M. (1970) The Flow of Fluid through an Elastic Solid, Acta Mechanica 9, 329–340. [CrossRef] [Google Scholar]
  • Hart D.J., Wang H.F. (1998) Poroelastic Effects During a Laboratory Transient Pore Pressure Test, in Poromechanics, Thimus J.F., Abousleiman Y., Cheng A.H.-D., Coussy O., Detournay E. (eds), Balkema, Rotterdam. [Google Scholar]
  • Horseman S.T. (2001) Self-Healing of Fractures in Argillaceous Media from the Geomechanical Point of View, in Self-healing topical session , Proceedings of 11th Clay Club Meeting, Nancy, OECD/NEA, Paris. [Google Scholar]
  • Hoteit N., Su K., Tijani M., Shao J.-F.(eds) (2002) Hydromechanical and Thermohydromechanical Behaviour of Deep Argillaceous Rock-Theory and experiments, Proceedings of the International Workshop on Geomechanics, Paris, A.A Balkema, Lisse, The Netherlands. [Google Scholar]
  • Hueckel T., Peano A. (1996) Thermomechanics of Clays and Clay Barriers, Engineering Geology 41, 1–4. [CrossRef] [Google Scholar]
  • Jannot Y., Lasseux D. (2012) A new quasi-steady method to measure gas permeability of weakly permeable porous media, Review of Scientific Instruments 83, 015113. [CrossRef] [Google Scholar]
  • Jenner L. (2012) Radial Hydraulic Flow Testing of an Argillaceous Limestone, M.Eng Thesis, Department of Civil Engineering and Applied Mechanics, McGill University, Montreal. [Google Scholar]
  • Joint Review Panel Report (2015) Environmental Assessment Report. Deep Geologic Repository for Low and Intermediate Level Radioactive Waste Project, CEAA Reference No. 17520, Canadian Nuclear Safety Commission, Ottawa. [Google Scholar]
  • Kiyama T., Kita H., Ishijima Y., Yanagidani T., Akoi K., Sato T. (1996) Permeability in Anisotropic Granite Under Hydrostatic Compression and Tri-axial Compression Including Post-Failure Regions, Proceedings of the 2nd North American Rock Mechanics Symposium, 1643–1650. [Google Scholar]
  • Maßmann J., Uehara A., Rejeb A., Millard A. (2009) Investigation of Desaturation in an Old Tunnel and New Galleries at an Argillaceous Site, Environmental Geology 57, 1337–1345. [CrossRef] [Google Scholar]
  • Mahyari A.T., Selvadurai A.P.S. (1998) Enhanced Consolidation in Brittle Geomaterials Susceptible to Damage, Mechanics of Cohesive Frictional Materials 3, 291–303. [CrossRef] [Google Scholar]
  • Mazurek M. (2004) Long-Term Used Nuclear Fuel Waste Management - Geoscientific Review of the Sedimentary Sequence in Southern Ontario, Technical Report TR 04–01, Institute of Geological Sciences, University of Bern, Switzerland. [Google Scholar]
  • Mehta P.K., Monteiro P.J.M. (2014) Concrete, Microstructure Properties and Materials, McGraw-Hill ,New York. [Google Scholar]
  • NWMO (2011) Geoscientific Verification Plan, Nuclear Waste Management Organization Document, NWMO DGR-TR-2011-38 R000, Toronto, Canada. [Google Scholar]
  • OPG (2008) Ontario Power Generation’s Deep Geologic Repository for Low and Intermediate Level Waste, Supporting Technical Report: Phase 1-Geosynthesis. OPG 00216-REP-01300-00010-R00. [Google Scholar]
  • Pijaudier-Cabot G., Pereira J.-M. (eds) (2013) Geomechanics in CO2Storage Facilities, John Wiley & Sons, New Jersey. [Google Scholar]
  • Pusch R. (ed.) (1990) Artificial Clay Barriers for High Level Radioactive Waste Repositories, Engineering Geology 28, 231–464. [CrossRef] [Google Scholar]
  • Selvadurai A.P.S. (1996a) Heat-Induced Moisture Movement in a Clay Barrier I. Experimental Modelling of Borehole Emplacement, Engineering Geology 41, 239–256. [CrossRef] [Google Scholar]
  • Selvadurai A.P.S. (1996b) Heat-Induced Moisture Movement in a Clay Barrier II. Computational Modelling and Comparison with Experimental Results, Engineering Geology 41, 219–238. [Google Scholar]
  • Selvadurai A.P.S. (1996c) Mechanics of Poroelastic Media, Kluwer Academic Publishers, Boston. [CrossRef] [Google Scholar]
  • Selvadurai A.P.S. (Ed.) (1997) Hydro-Thermo-Mechanics of Engineered Clay Barriers and Geological Barriers, Special Issue of Engineering Geology 47, 311–379. [CrossRef] [Google Scholar]
  • Selvadurai A.P.S. (2000a) Partial Differential Equations in Mechanics Vol. 1: Fundamentals, Laplace’s Equation, the Diffusion Equation, the Wave Equation, Springer Verlag, Berlin. [Google Scholar]
  • Selvadurai A.P.S. (2000b) Partial Differential Equations in Mechanics Vol. 2: The Bi-Harmonic Equation, Poisson’s Equation, Springer-Verlag, Berlin. [Google Scholar]
  • Selvadurai A.P.S. (2002) Influence of Pressurized Water Influx on the Hygro-Thermal Behaviour of an Engineered Clay Barrier in a Waste Emplacement Borehole, Engineering Geology 64, 157–178. [CrossRef] [Google Scholar]
  • Selvadurai A.P.S. (2004a) Fluid Intake Cavities in Stratified Porous Media, Journal of Porous Media 7, 165–181. [CrossRef] [Google Scholar]
  • Selvadurai A.P.S. (2004b) Stationary Damage Modelling of Poroelastic Contact, International Journal of Solids and Structures 41, 2043–2064. [CrossRef] [Google Scholar]
  • Selvadurai A.P.S. (2006) Gravity-Driven Advective Transport during Deep Geological Disposal of Contaminants, Geophysical Research Letters 33, L08408. [Google Scholar]
  • Selvadurai A.P.S. (2007) The Analytical Method in Geomechanics, Applied Mechanics Reviews 60, 87–106. [CrossRef] [Google Scholar]
  • Selvadurai A.P.S. (2009) Influence of Residual Hydraulic Gradients on Decay Curves for One-Dimensional Hydraulic Pulse Tests, Geophysical Journal International 177, 1357–1365. [CrossRef] [Google Scholar]
  • Selvadurai A.P.S. (2010) On the Hydraulic Intake Shape Factor for a Circular Opening Located at an Impervious Boundary: Influence of Inclined Stratification, International Journal for Numerical and Analytical Methods in Geomechanics 35, 6, 639–651. [CrossRef] [Google Scholar]
  • Selvadurai A.P.S. (2012) Fluid Leakage Through Fractures in an Impervious Caprock Embedded between Two Geologic Aquifers, Advances in Water Resources 41, 76–83. [CrossRef] [Google Scholar]
  • Selvadurai A.P.S. (2013) Caprock Breach: a Potential Threat to Secure Geologic Sequestration of CO2, in Geomechanics in CO2Storage Facilities, Pijaudier-Cabot G., Pereira J.-M. (eds), John Wiley & Sons, New Jersey. [Google Scholar]
  • Selvadurai A.P.S. (2015a) Thermo-Hydro-Mechanical Behaviour of Poroelastic Media, Chapter 20, in Handbook of Porous Media, Vafai K. (ed.), Taylor and Francis, U.K. [Google Scholar]
  • Selvadurai A.P.S. (2015b) Normal stress-induced permeability hysteresis of a fracture in a granite cylinder, Geofluids, Special Issue on Crustal Permeability 15, 37–47. [Google Scholar]
  • Selvadurai A.P.S., Carnaffan P. (1997) A Transient Pressure Pulse Technique for the Measurement of Permeability of a Cement Grout, Canadian Journal of Civil Engineering 24, 489–502. [CrossRef] [Google Scholar]
  • Selvadurai A.P.S., Głowacki A. (2008) Evolution of Permeability Hysteresis of Indiana Limestone during Isotropic Compression, Ground Water 46, 113–119. [PubMed] [Google Scholar]
  • Selvadurai A.P.S., Ichikawa Y. (2013) Some Aspects of Air-Entrainment on Decay Rates in Hydraulic Pulse Tests, Engineering Geology 165, 38–45. [CrossRef] [Google Scholar]
  • Selvadurai A.P.S., Jenner L. (2012) Radial Flow Permeability Testing of an Argillaceous Limestone, Ground Water 51, 1, 100–107. [CrossRef] [PubMed] [Google Scholar]
  • Selvadurai A.P.S., Najari M. (2013) On the Interpretation of Hydraulic Pulse Tests on Rock Specimens, Advances in Water Resources 53, 139–149. [CrossRef] [Google Scholar]
  • Selvadurai A.P.S., Najari M. (2015) Laboratory-Scale Hydraulic Pulse Testing: Influence of Air Fraction in Cavity on Estimation of Permeability, Géotechnique 65, 2, 126–134. [CrossRef] [Google Scholar]
  • Selvadurai A.P.S., Nguyen T.S. (1997) Scoping Analyses of the Coupled Thermal-Hydrological-Mechanical Behaviour of the Rock Mass around a Nuclear Fuel Waste Repository, Engineering Geology 47, 379–400. [CrossRef] [Google Scholar]
  • Selvadurai A.P.S., Selvadurai P.A. (2010) Surface Permeability Tests: Experiments and Modelling for Estimating Effective Permeability, Proceedings of the Royal Society, Mathematical and Physical Sciences Series A 466, 2122, 2819–2846. [CrossRef] [Google Scholar]
  • Selvadurai A.P.S., Shirazi A. (2004) Mandel–Cryer Effects in Fluid Inclusions in Damage-Susceptible Poroelastic Geologic Media, Computers and Geotechnics 31, 285–300. [CrossRef] [Google Scholar]
  • Selvadurai A.P.S., Singh B.M. (1984) On the expansion of a penny-shaped crack by a rigid circular disc inclusion, International Journal of Fracture 25, 69–77. [CrossRef] [Google Scholar]
  • Selvadurai A.P.S., Singh B.M. (1985) The annular crack problem for an isotropic elastic solid, Quarterly Journal of Mechanics and Applied Mathematics 38, 233–243. [CrossRef] [Google Scholar]
  • Selvadurai A.P.S., Boulon M.J., Nguyen T.S. (2005) The Permeability of an Intact Granite, Pure and Applied Geophysics 162, 373–407. [CrossRef] [Google Scholar]
  • Selvadurai A.P.S., Letendre A., Hekimi B. (2011) Axial Flow Hydraulic Pulse Testing of an Argillaceous Limestone, Environmental Earth Sciences 64, 8, 2047–2058. [CrossRef] [Google Scholar]
  • Selvadurai P.A., Selvadurai A.P.S. (2014) On the Effective Permeability of a Heterogeneous Porous Medium: the Role of the Geometric Mean, Philosophical Magazine 94, 2318–2338. [CrossRef] [Google Scholar]
  • Shiping L., Yushou L., Yi L., Zhenye W., Gang Z. (1994) Permeability-Strain Equations Corresponding to the Complete Stress–Strain Path of Yinzhuang Sandstone, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 31, 383–391. [CrossRef] [Google Scholar]
  • Sneddon I.N. (1951) Fourier Transforms, McGraw-Hill, New York. [Google Scholar]
  • Terzaghi K. (1923) Die Berechnung der Durchlassigkeitsziffer des Tones aus Dem Verlauf der Hydrodynamischen Spannungserscheinungen, Akad Wissensch Wien Sitzungsber Mathnaturwissensch Klasse IIa 142, 125–138. [Google Scholar]
  • Testa S.M. (1994) Geological Aspects of Hazardous Waste Management, CRC Press, Boca Raton. [Google Scholar]
  • Tranter C.J. (1971) Integral Transform in Mathematical Physics, Chapman and Hall, London. [Google Scholar]
  • Verruijt A. (2014) Theory and Problems of Poroelasticity, Delft University of Technology, The Netherlands. [Google Scholar]
  • Vilks P., Miller N.H. (2007) Evaluation of Experimental Protocols for Characterizing Diffusion in Sedimentary Rocks, Atomic Energy of Canada Limited. Nuclear Waste Management Division Report TR-2007-11. Toronto, Ontario. [Google Scholar]
  • Wang H.F. (2000) Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology, Princeton University Press, Princeton. [Google Scholar]
  • White F.M. (1986) Fluid Mechanics, McGraw-Hill, New York. [Google Scholar]
  • Zoback M.D., Byerlee J.D. (1975) The Effect of Microcrack Dilatancy on the Permeability of Westerly Granite, Journal of Geophysical Research 80, 752–755. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.