Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 3, May–June 2016
Article Number 37
Number of page(s) 9
Published online 13 August 2015
  • Behar F., Leblond C., Saint-Paul C. (1989) Analyse quantitative des effluents de pyrolyse en milieu ouvert et fermé, Revue de l’Institut Français du Pétrole 44, 387–397. [Google Scholar]
  • Behar F., Beaumont V., De B., Penteado H.L. (2001) Rock-Eval 6 Technology: Performances and Developments, Oil & Gas Science and Technology 56, 111–134. [Google Scholar]
  • Behar F., Lorant F., Lewan M. (2008) Role of NSO compounds during primary cracking of a Type II kerogen and a Type III lignite, Organic Geochemistry 44, 387–397. [Google Scholar]
  • Behar F., Roy S., Jarvie D. (2010) Artificial maturation of a Type I kerogen in closed system: Mass balance and kinetic modelling, Organic Geochemistry 41, 1235–1247. [Google Scholar]
  • Brigaud B., Durlet C., Deconinck J.-F., Vincent B., Pucéat E., Thierry J., Trouiller A. (2009) Facies and climate/environmental changes recorded on a carbonate ramp: a sedimentological and geochemical approach on Middle Jurassic carbonates (Paris Basin, France), Sediment. Geol. 222, 181–206. [CrossRef] [Google Scholar]
  • Carpentier B., Huc A.Y., Hamou P., Wilhems A. (1995) Detection, distribution and origin of thin tar mats in the Miller field (North Sea, UK), 17th International Meeting on Organic Geochemistry, San Sebastian, Spain, pp. 388–390. [Google Scholar]
  • Carpentier B., Huc A.-Y., Marquis F., Badr A.E.R., Al Aidarous A.A., Al-Baker S. (1998) Distribution and origin of a Tar Mat in the S. Field (Abu Dhabi, A.E.U.), SPE Paper 49472, 1–10. [Google Scholar]
  • Espitalié J., Deroo G., Marquis F. (1986) La pyrolyse Rock-Eval et ses applications, Revue de l’Institut Français du Pétrole 41, 73–89. [Google Scholar]
  • Espitalié J., Marquis F., Sage L. (1987) Organic geochemistry of the Paris Basin, Brooks J., Glennie K. (eds), Petroleum Geology of North West Europe, Graham and Totman, London, pp. 71–86. [Google Scholar]
  • Ewing T.E. (2006) Mississippian Barnett Shale, Fort Worth Basin: North-central Texas: gas-shale play with multi-trillon cubic foot potential. Discussion, American Association of Petroleum Geologists Bulletin 90, 963–966. [CrossRef] [Google Scholar]
  • Lafargue E., Marquis F., Pillot D. (1998) Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies, Oil & Gas Science and Technology 53, 421–437. [CrossRef] [EDP Sciences] [Google Scholar]
  • Littke R., Cramer B., Gerling P., Lopatin N.V., Poelchau H.S., Schaefer R.G., Welte D.H. (1999) Gas generation and accumulation in the West Siberian basin, American Association of Petroleum Geologists Bulletin 83, 1642–1665. [Google Scholar]
  • Montgomery S.L., Jarvie D.M., Bowker K.A., Pollastro R.M. (2005) Mississippian Barnett Shale, Fort Worth Basin, north-central Texas: gas-shale play with multitrillion cubic foot potential, American Association of Petroleum Geologists Bulletin 89, 155–175. [CrossRef] [Google Scholar]
  • Perrodon A., Zabek J. (1990) Paris Basin, in Interior Cratonic Basins, American Association of Petroleum Geologists Bulletin 51, 633–679. [Google Scholar]
  • Peters K.E., Kontorovich A.E., Moldowan J.M., Andrusevich V.E., Huizinga B.J., Demaison G.J., Stasova O.F. (1993) Geochemistry of selected oils and rocks from the central portion of the West Siberian basin, Russia, American Association of Petroleum Geologists Bulletin 77, 863–887. [Google Scholar]
  • Pillot D., Letort G., Romero-Sarmiento M.F., Lamoureux-Var V., Beaumont V., Garcia B. (2014) Procédé pour l’évaluation d’au moins une caractéristique pétrolière d’un échantillon de roche, Patent 14/55.009. [Google Scholar]
  • Pollastro R.M., Jarvie D.M., Hill R.J., Adams C. (2007) Geologic framework of the Mississippian Barnett Shale, Barnett-Paleozoic total petroleum system, Bend Arch-Fort Worth Basin, Texas, American Association of Petroleum Geologists Bulletin 91, 405–436. [Google Scholar]
  • Romero-Sarmiento M.-F., Ducros M., Carpentier B., Lorant F., Cacas M.-C., Pegaz-Fiornet S., Wolf S., Rohais S., Moretti I. (2013) Quantitative evaluation of TOC, organic porosity and gas retention distribution in a gas shale play using petroleum system modeling: Application to the Mississippian Barnett Shale, Marine and Petroleum Geology 45, 315–330. [CrossRef] [Google Scholar]
  • Romero-Sarmiento M.-F., Rouzaud J.-N., Bernard S., Deldicque D., Thomas M., Littke R. (2014) Evolution of Barnett Shale organic carbon structure and nanostructure with increasing maturation, Organic Geochemistry 71, 7–16. [CrossRef] [Google Scholar]
  • Ruble T.E., Lewan M.D., Philp R.P. (2001) New insights on the Green River petroleum system in the Uinta Basin from hydrous pyrolysis experiments, American Association of Petroleum Geologists Bulletin 85, 1333–1371. [Google Scholar]
  • Trabelsi K., Espitalié J., Huc A.-Y. (1994) Characterization of Extra Heavy Oils and Tar Deposits by modified Pyrolysis Methods, Proceedings of the “Heavy Oil Technologies in a Wider Europe” Thermie EC Symposium, Berlin, pp. 30–40. [Google Scholar]
  • Underdown R., Redfern J. (2008) Petroleum generation and migration in the Ghadamis Basin, North Africa: a two-dimensional basin-modeling study, American Association of Petroleum Geologists Bulletin 92, 53–76. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.