- Henley E.J., Seader J.D., Roper D.K. (2011) Separation Process Principles, Third Edition, Jonh Wiley & Sons. [Google Scholar]
- Jacquemin J., Costa Gomes M.F., Husson P., Majer V. (2006) Solubility of Carbon Dioxide, Ethane, Methane, Oxygen, Nitrogen, Hydrogen, Argon, and Carbon Monoxide in 1-Butyl-3-methylimidazolium Tetrafluoroborate Between Temperatures 283 K and 343 K and at Pressures Close to Atmospheric, J. Chem. Thermodyn. 38, 490–502. [CrossRef] [Google Scholar]
- Hu Y., Liu Z., Xu C., Zhang X. (2011) The Molecular Characteristics Dominating the Solubility of Gases in Ionic Liquids, Chem. Soc. Rev. 40, 3802–3823. [CrossRef] [PubMed] [Google Scholar]
- Lei Z., Dai C., Chen B. (2014) Gas Solubility in Ionic Liquids, Chem. Rev. 114, 1289–1326. [CrossRef] [PubMed] [Google Scholar]
- Olivier-Bourbigou H., Magna L., Morvan D. (2010) Ionic liquids and catalysis: Recent progress from knowledge to applications, Appl. Catal. A-Gen. 373, 1–56. [CrossRef] [Google Scholar]
- Armand M., Endres F., MacFarlane D.R., Ohno H., Scrosati B. (2009) Ionic-liquid materials for the electrochemical challenges of the future, Nat. Mater. 8, 621–629. [CrossRef] [PubMed] [Google Scholar]
- Han D., Row K.H. (2010) Recent Applications of Ionic Liquids in Separation Technology, Molecules 15, 2405–2426. [CrossRef] [PubMed] [Google Scholar]
- Hong G., Jacquemin J., Deetlefs M., Hardacre C., Husson P., Costa Gomes M.F. (2007) Solubility of Carbon Dioxide and Ethane in Three Ionic Liquids Based on the Bis{(trifluoromethyl)sulfonyl}imide Anion, Fluid Phase Equilibr. 257, 27–34. [CrossRef] [Google Scholar]
- Camper D., Becker C., Koval C., Noble R. (2005) Low Pressure Hydrocarbon Solubility in Room Temperature Ionic Liquids Containing Imidazolium Rings Interpreted Using Regular Solution Theory, Ind. Eng. Chem. Res. 44, 1928–1933. [CrossRef] [Google Scholar]
- Camper D., Scovazzo P., Koval C., Noble R. (2004) Gas Solubilities in Room-Temperature Ionic Liquids, Ind. Eng. Chem. Res. 43, 3049–3054. [CrossRef] [Google Scholar]
- Kilaru P.K., Scovazzo P. (2008) Correlations of Low-Pressure Carbon Dioxide and Hydrocarbon Solubilities in Imidazolium-, Phosphonium-, and Ammonium-Based Room-Temperature Ionic Liquids. Part 2. Using Activation Energy of Viscosity, Ind. Eng. Chem. Res. 47, 910–919. [CrossRef] [Google Scholar]
- Kilaru P.K., Condemarin R.A., Scovazzo P. (2008) Correlations of Low-Pressure Carbon Dioxide and Hydrocarbon Solubilities in Imidazolium-, Phosphonium-, and Ammonium-Based Room-Temperature Ionic Liquids. Part 1. Using Surface Tension, Ind. Eng. Chem. Res. 47, 900–909. [CrossRef] [Google Scholar]
- Morgan D., Ferguson L., Scovazzo P. (2005) Diffusivities of Gases in Room-Temperature Ionic Liquids: Data and Correlations Obtained Using a Lag-Time Technique, Ind. Eng. Chem. Res. 44, 4815–4823. [CrossRef] [Google Scholar]
- Liu X., Afzal W., Yu G., He M., Prausnitz J.M. (2013) High Solubilities of Small Hydrocarbons in Trihexyl Tetradecylphosphonium Bis(2,4,4-trimethylpentyl) Phosphinate, J. Phys. Chem. B 117, 10534–10539. [CrossRef] [PubMed] [Google Scholar]
- Gan Q., Zou Y., Rooney D., Nancarrow P., Thompson J., Liang L., Lewis M. (2011) Theoretical and Experimental Correlations of Gas Dissolution, Diffusion, and Thermodynamic Properties in Determination of Gas Permeability and Selectivity in Supported Ionic Liquid Membranes, Adv. Colloid Interfac. 164, 45–55. [CrossRef] [Google Scholar]
- Xing H., Zhao X., Li R., Yang Q., Su B., Bao Z., Yang Y., Ren Q. (2013) Improved Efficiency of Ethylene/Ethane Separation Using a Symmetrical Dual Nitrile-Functionalized Ionic Liquid, ACS Sustainable Chem. Eng. 1, 1357–1363. [CrossRef] [Google Scholar]
- Anthony J.L., Anderson J.L., Maginn E.J., Brennecke J.F. (2005) Anion Effects on Gas Solubility in Ionic Liquids, J. Phys. Chem. B 109, 6366–6374. [CrossRef] [PubMed] [Google Scholar]
- Zhang J., Zhang Q., Qiao B., Deng Y. (2007) Solubilities of the Gaseous and Liquid Solutes and Their Thermodynamics of Solubilization in the Novel Room-Temperature Ionic Liquids at Infinite Dilution by Gas Chromatography, J. Chem. Eng. Data 52, 2277–2283. [CrossRef] [Google Scholar]
- Zhang Q., Li Z., Zhang J., Zhang S., Zhu L., Yang J., Zhang X., Deng Y. (2007) Physicochemical Properties of Nitrile-Functionalized Ionic Liquids, J. Phys. Chem. B 111, 2864–2872. [CrossRef] [PubMed] [Google Scholar]
- Palgunadi J., Kim H.S., Lee J.M., Jung S. (2010) Ionic Liquids for Acetylene and Ethylene Separation: Material Selection and Solubility Investigation, Chem. Eng. Process. 49, 192–198. [CrossRef] [Google Scholar]
- Costa Gomes M.F. (2007) Low-Pressure Solubility and Thermodynamics of Solvation of Carbon Dioxide, Ethane, and Hydrogen in 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide between Temperatures of 283 K and 343 K, J. Chem. Eng. Data 52, 472–475. [CrossRef] [Google Scholar]
- Anthony J.L., Maginn E.J., Brennecke J.F. (2002) Solubilities and Thermodynamic Properties of Gases in the Ionic Liquid 1-n-Butyl-3-methylimidazolium Hexafluorophosphate, J. Phys. Chem. B 106, 7315–7320. [CrossRef] [Google Scholar]
- Liu X., Ruiz E., Afzal W., Ferro V., Palomar J., Prausnitz J.M. (2014) High Solubilities for Methane, Ethane, Ethylene, and Propane in Trimethyloctylphosphonium Bis(2,4,4-trimethylpentyl) Phosphinate ([P8111][TMPP]), Ind. Eng. Chem. Res. 53, 363–368. [CrossRef] [Google Scholar]
- Anderson J.L., Dixon J.K., Brennecke J.F. (2007) Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-Hexyl-3-methylpyridinium Bis(trifluoromethylsulfonyl)imide: Comparison to Other Ionic Liquids, Acc. Chem. Res. 40, 1208–1216. [CrossRef] [PubMed] [Google Scholar]
- Liu X., Afzal W., Prausnitz J.M. (2013) Solubilities of Small Hydrocarbons in Tetrabutylphosphonium Bis(2,4,4-trimethylpentyl) Phosphinate and in 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide, Ind. Eng. Chem. Res. 52, 14975–14978. [CrossRef] [Google Scholar]
- Safarik D.J., Eldridge R.B. (1998) Olefin/Paraffin Separations by Reactive Absorption: A Review, Ind. Eng. Chem. Res. 37, 2571–2581. [CrossRef] [Google Scholar]
- Moura L., Mishra M., Bernales V., Fuentealba P., Padua A.A.H., Santini C.C., Costa Gomes M.F. (2013) Effect of Unsaturation on the Absorption of Ethane and Ethylene in Imidazolium-Based Ionic Liquids, J. Phys. Chem. B 117, 7416–7425. [CrossRef] [PubMed] [Google Scholar]
- Moura L., Darwich W., Santini C.C., Costa Gomes M.F. (2015) Imidazolium-based ionic liquids with cyano groups for the selective absorption of ethane and ethylene, Chem. Eng. J. 280, 755–762. [CrossRef] [Google Scholar]
- Green B.D., O’Brien R.A., Davis Jr. J.H., West K.N. (2015) Ethane and Ethylene Solubility in an Imidazolium-Based Lipidic Ionic Liquid, Ind. Eng. Chem. Res. 54, 5165–5171. [CrossRef] [Google Scholar]
- Moura L. (2014) Ionic liquids for the separation of gaseous hydrocarbons, PhD Thesis, Université Lyon 1. [Google Scholar]
- Sánchez L.M.G., Meindersma G.W., Haan A.B. (2009) Potential of Silver-Based Room-Temperature Ionic Liquids for Ethylene/Ethane Separation, Ind. Eng. Chem. Res. 48, 10650–10656. [CrossRef] [Google Scholar]
- Mortaheb H.R., Mafi M., Mokhtarani B., Sharifi A., Mirzaei M., Khodapanah N., Ghaemmaghami F. (2010) Experimental Kinetic Analysis of Ethylene Absorption in Ionic Liquid [Bmim]NO3] with Dissolved AgNO3 by a Semi-Continuous Process, Chem. Eng. J. 158, 384–392. [CrossRef] [Google Scholar]
- Faiz R., Li K. (2012) Olefin/Paraffin Separation Using Membrane Based Facilitated Transport/Chemical Absorption Techniques, Chem. Eng. Sci. 73, 261–284. [CrossRef] [Google Scholar]
- Pitsch F., Krull F.F., Agel F., Schulz P., Wasserscheid P., Melin T., Wessling M. (2012) An Adaptive Self-Healing Ionic Liquid Nanocomposite Membrane for Olefin-Paraffin Separations, Adv. Mater. 24, 4306–4310. [CrossRef] [PubMed] [Google Scholar]
- Agel F., Pitsch F., Krull F.F., Schulz P., Wessling M., Melin T., Wasserscheid P. (2011) Ionic Liquid Silver Salt Complexes for Propene/Propane Separation, Phys. Chem. Chem. Phys. 13, 725–731. [CrossRef] [PubMed] [Google Scholar]
- Ortiz A., Ruiz A., Gorri D., Ortiz I. (2008) Room Temperature Ionic Liquid with Silver Salt as Efficient Reaction Media for Propene/Propane Separation: Absorption Equilibrium, Sep. Purif. Technol. 63, 311–318. [CrossRef] [Google Scholar]
- Staudt-Bickel C., Koros W.J. (2000) Olefin/paraffin Gas Separations with 6FDA-Based Polyimide Membranes, J. Membrane Sci. 170, 205–214. [CrossRef] [Google Scholar]
- Morisato A., He Z., Pinnau I., Merkel T.C. (2002) Transport Properties of PA12-PTMO/AgBF4 Solid Polymer Electrolyte Membranes for Olefin/Paraffin Separation, Desalination 145, 347–351. [CrossRef] [Google Scholar]
- Hsiue G., Yang J. (1993) Novel Methods in Separation of Olefin/Paraffin Mixtures by Functional Polymeric Membranes, J. Membrane Sci. 92, 117–128. [CrossRef] [Google Scholar]
- Lin I.J.B., Vasam C.S. (2005) Metal-Containing Ionic Liquids and Ionic Liquid Crystals Based on Imidazolium Moiety, J. Organomet. Chem. 690, 3498–3512. [CrossRef] [Google Scholar]
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 2, March–April 2016
Dossier: Special Issue in Tribute to Yves Chauvin
|
|
---|---|---|
Article Number | 23 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.2516/ogst/2015041 | |
Published online | 05 April 2016 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.