Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 1, January–February 2016
Article Number 16
Number of page(s) 14
DOI https://doi.org/10.2516/ogst/2014028
Published online 22 January 2016
  • Gordon J.M. (1988) On optimized solar-driven heat engines, Solar Energy 40, 457–461. [CrossRef]
  • Sahin A.Z. (2000) Optimum operating conditions of solar-driven heat engines, Energy Conversion and Management 41, 1335–1343. [CrossRef]
  • Koyun A. (2004) Performance analysis of a solar-driven heat engine with external irreversibilities under maximum power and power density condition, Energy Conversion and Management 45, 1941–1947. [CrossRef]
  • Sogut O.S., Durmayaz A. (2005) Performance optimization of a solar-driven heat engine with finite-rate heat transfer, Renewable Energy 30, 1329–1344. [CrossRef]
  • Yilmaz T., Ust Y., Erdil A. (2006) Optimum operating conditions of irreversible solar driven heat engines, Renewable Energy 31, 1333–1342. [CrossRef]
  • Ust Y. (2007) Effects of combined heat transfer on the thermoeconomic performance of irreversible solar-driven heat engines, Renewable Energy 32, 2085–2095. [CrossRef]
  • Barranco-Jiménez M.A., Sánchez-Salas N. (2008) On thermodynamic optimization of solar collector model under maximum ecological conditions, Journal of the Energy Institute 81, 164–167. [CrossRef]
  • Blank D.A., Wu C. (1998) Finite-time power limit for solar-radiant Ericsson engines in space applications, Applied Thermal Engineering 18, 1347–1357. [CrossRef]
  • Bädescu V. (1992) Optimum operation of a solar converter in combination with a Stirling or Ericsson heat engine, Energy 17, 601–607. [CrossRef]
  • Ahmadi M.H., Hosseinzade H., Sayyaadi H., Mohammadi A.H., Kimiaghalam F. (2013) Application of the multi-objective optimization method for designing a powered Stirling heat engine: design with maximized power, thermal efficiency and minimized pressure loss, Renewable Energy 60, 313–322. [CrossRef]
  • Ahmadi M.H., Sayyaadi H., Dehghani S., Hosseinzade H. (2013) Designing a solar powered Stirling heat engine based on multiple criteria: maximized thermal efficiency and power, Energy Conversion and Management 75, 282–291. [CrossRef]
  • Ahmadi M.H., Mohammadi A.H., Dehghani S., Barranco-Jiménez M.A. (2013) Multi-objective thermodynamic-based optimization of output power of solar dish-Stirling engine by implementing an evolutionary algorithm, Energy Conversion and Management 75, 438–445. [CrossRef]
  • Chen J., Yan Z., Chen L., Andresen B. (1998) Efficiency bound of a solar driven Stirling heat engine system, International Journal of Energy Research 22, 805–812. [CrossRef]
  • Zhang Y., Lin B., Chen J. (2005) The unified cycle model of aclass of solar-driven heat engines and their optimum performance characteristics, Journal of Applied Physics 97, 8490–8495.
  • Zheng S., Chen J., Lin G. (2005) Performance characteristics of an irreversible solar-driven Braysson heat engine at maximum efficiency, Renewable Energy 30, 601–610. [CrossRef]
  • Wu L., Lin G., Chen J. (2010) Parametric optimization of a solar-driven Braysson heat engine with variable heat capacity of the working fluid and radiation-convection heat losses, Renewable Energy 35, 95–100. [CrossRef]
  • Durmayaz A., Sogut O.S., Sahin B., Yamuz H. (2004) Optimization of thermal systems based on finite-time thermodynamics and thermo economics, Prog. Energy Combust. Sci. 30, 175–217. [CrossRef]
  • Cheng C.Y., Chen C.K. (1996) Power optimization of an endoreversible regenerative Brayton cycle, Energy 21, 241–247. [CrossRef]
  • Chen L.G., Sun F., Wu C., Kiang R.L. (1997) Theoretical analysis of the performance of our generative closed Brayton cycle with internal irreversibilities, Energy Conversion and Management 3, 871–877. [CrossRef]
  • Medina A., Roco J.M.M., Calvo Hernández A. (1996) Regenerative gas turbines at maximum power density conditions, J. Phys. D: Appl. Phys. 29, 2802–2805. [CrossRef]
  • Götkun S., Yavuz H. (1999) Thermal efficiency of a regenerative Brayton cycle with isothermal heat addition, Energy Conversion and Management 40, 1259–1266. [CrossRef]
  • Erbay L., Götkun S., Yarvuz H. (2001) Optimal design of the regenerative gas turbine engine with isothermal heat addition, Appl. Energy 6, 249–264. [CrossRef]
  • Vecchiarelli J., Kawall J.G., Wallace J.S. (1997) Analysis of a concept for increasing the efficiency of a Brayton cycle via isothermal heat addition, Int. J. Energy Res. 2, 113–127. [CrossRef]
  • Cheng C.Y., Chen C.K. (2000) Maximum power of an endoreversible intercooled Brayton cycle, Int. J. Energy Res. 24, 485–494. [CrossRef]
  • Wang W., Chen L., Sun F., Wu C. (2003) Performance analysis of an irreversible variable temperature heat reservoir closed intercooled regenerated Brayton cycle, Energy Conversion and Management 44, 2713–2732. [CrossRef]
  • Calvo Hernández A., Roco J.M.M., Medina A. (1996) Power and efficiency in a regenerative gas-turbine with multiple reheating and intercooling stages, J. Phys. D: Appl. Phys. 29, 1462–1468. [CrossRef]
  • Sogut O.S., Ust Y., Sahin B. (2006) The effects of intercooling and regeneration on the thermo-ecological performance analysis of an irreversible-closed Brayton heat engine with variable temperature thermal reservoirs, J. Phys. D: Appl. Phys. 39, 4713–4721. [CrossRef]
  • Tyagi J.K., Chen G.M., Wang Q., Kaushik S.C. (2006) Thermodynamic analysis and parametric study of an irreversible regenerative-intercooled-reheat Brayton cycle, Int. J. Therm. Sci. 45, 829–840. [CrossRef]
  • Calvo Hernández A., Medina A., Roco J.M.M. (1995) Power and efficiency in a regenerative gas turbine, J. Phys. D: Appl. Phys. 28, 2020–2023. [CrossRef]
  • Sánchez-Orgaz S., Medina A., Calvo Hernández A. (2010) Thermodynamic model and optimization of a multi-step irreversible Brayton cycle, Energy Conversion and Management 51, 2134–2143. [CrossRef]
  • Bejan A. (1988) Theory of heat transfer irreversible power plants, Int. J. Heat Mass Transfer 31, 1222–1229.
  • Landsberg P.T., Leff H.S. (1989) Thermodynamic cycles with nearly universal maximum-work efficiencies, J. Phys. A 22, 4019–4026. [CrossRef] [MathSciNet]
  • Chen L., Zeng J., Sun F., Wu C. (2001) Power density analysis and optimization of a regenerated closed variable-temperature heat reservoir Brayton cycle, J. Phys. D: Appl. Phys. 34, 1727–1739. [CrossRef]
  • Sahin B., Kodal A., Kaya S.S. (1998) A comparative performance analysis of irreversible reheating Joule–Brayton engines under maximum power density and maximum power conditions, J. Phys. D: Appl. Phys. 31, 2125–2131. [CrossRef]
  • Ust Y., Sahin B., Kodal A., Akcay I.H. (2006) Ecological coefficient of performance analysis and optimization of an irreversible regenerative-Brayton heat engine, Appl. Energy 83, 558–572. [CrossRef]
  • Angulo-Brown F. (1991) An ecological optimization criterion for finite-time heat engines, J. Appl. Phys. 69, 7465–7469. [CrossRef]
  • Sieniutycz S., Salamon P. eds (1990) Finite-time thermodynamics and thermo-economics, Taylor & Francis.
  • Valero A., Correas L., Serra L. (1999) Thermodynamic optimization of complex energy systems, Kluwer, p. 117. [CrossRef]
  • Calvo Hernández A., Medina A., Roco J.M.M., White J.A., Velasco S. (2001) Unified optimization criterion for energy converters, Phys. Rev. E. 63, 0371021–0371023.
  • Chen J. (1994) The maximum power output and maximum efficiency of an irreversible Carnot engine, J. Phys. D: Appl. Phys. 27, 1144–1149. [CrossRef]
  • Arias-Hernandez L.A., Barranco-Jiménez M.A., Angulo-Brown F. (2009) Comparative analysis of two ecological type modes of performance for a simple energy converter, J. Energy Inst. 82, 223–227. [CrossRef]
  • Dong Y., El-Bakkali A., Feidt M., Descombes G., Périlhon C. (2012) Association of Finite-Dimension Thermodynamics and a Bond-Graph Approach for Modeling an Irreversible Heat Engine, Entropy 14, 1234–1258. [CrossRef]
  • Holland J.H. (1975) Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor.
  • Salcedo R., Antipova E., Boer D., Jiménez L., Guillén-Gosálbez G. (2012) Multi-objective optimization of solar Rankine cycles coupled with reverse osmosis desalination considering economic and life cycle environmental concerns, desalination 286, 358–371. [CrossRef]
  • Moura P.S., de Almeida A.T. (2010) Multi-objective optimization of a mixed renewable system with demand-side management, Renewable and Sustainable Energy Reviews 14, 1461–1468. [CrossRef]
  • Ahmadi M.H., Mohammadi A.H., Dehghani S., Feidt M., Barranco-Jiménez M.A. (2013) Optimal design of a solar driven heat engine based on thermal and thermo-economic criteria, Energy Conversion and Management 75, 635–642. [CrossRef]
  • Ahmadi M.H., Mohammadi A.H., Dehghani S. (2013) Evaluation of the maximized power of a regenerative endoreversible Stirling cycle using the thermodynamic analysis, Energy Conversion and Management 76, 561–570. [CrossRef]
  • Mohammad H. Ahmadi, Amir H. Mohammadi, S. Mohsen Pourkiaei (2014): Optimization of the thermodynamic performance of the Stirling engine, International Journal of Ambient Energy, DOI:10.80/01430750.2014.907211.
  • Lazzaretto A., Toffolo A. (2004) Energy, economy and environment as objectives in multi-criterion optimization of thermal systems design, Energy 29, 1139–1157. [CrossRef]
  • Toffolo A., Lazzaretto A. (2002) Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design, Energy 27, 549–567. [CrossRef]
  • Dhanalakshmi S., Kannan S., Mahadevan K., Baskar S. (2011) Application of modified NSGA-II algorithm to combined economic and emission dispatch problem, Int. J. Electr. Power Energy Syst. 33 4, 992–1002. [CrossRef]
  • Pires D.F., Antunes C.H., Martins A.G. (2012) NSGA-II with local search for a multi-objective reactive power compensation problem, Int. J. Electr. Power Energy Syst. 43 1, 313–324. [CrossRef]
  • Hoseyn Sayyaadi, Mohammad Hossein Ahmadi, Saeed Dehghani (2014) Optimal Design of a Solar-Driven Heat Engine Based on Thermal and Ecological Criteria, J. Energy Eng., 10.1061/(ASCE)EY.1943-7897.0000191, 04014012.
  • Najafi H., Najafi B. (2010) Multi-objective optimization of a plate and frame heat exchanger via genetic algorithm, Heat Mass Transfer 46, 639–647. [CrossRef]
  • Ahmadi M.H., Ahmadi M.A., Mohammadi A.H., Feidt M., Pourkiaei S.M. (2014) Multi-objective optimization of an irreversible Stirling cryogenic refrigerator cycle, Energy Conversion and Management 82, 351–360. [CrossRef]
  • Sánchez-Orgaz S., Medina A., Calvo Hernández A. (2013) Recuperative solar-driven multi-step gas turbine power plants, Energy Conversion and Management 67, 171–178. [CrossRef]
  • Duffie J.A., Beckman W.A. (2006) Solar Engineering of Thermal Processes, John Wiley and Sons, Hoboken, New Jersey.
  • Zhang Y., Lin B., Chen J. (2007) Optimum performance characteristics of an irreversible solar-driven Brayton heat engine at the maximum overall efficiency, Renewable Energy 32, 856–867. [CrossRef]
  • Sánchez-Orgaz S., Medina A., Calvo Hernández A. (2012) Maximum overall efficiency for a solar-driven gas turbine power plants, Int. J. Energy Res. 37 13, 1580–1591. [CrossRef]
  • Ahmadi M.H., Ahmadi M.A., Mohammadi A.H., Mehrpooya M., Feidt M. (2014) Thermodynamic optimization of Stirling heat pump based on multiple criteria, Energy Conversion and Management 80, 319–328. [CrossRef]
  • Toghyani S., Kasaeian A., Ahmadi M.H. (2014) Multi-objective optimization of Stirling engine using non-ideal adiabatic method, Energy Conversion and Management 80, 54–62. [CrossRef]
  • Taal M., Bulatov I., Klemeš J., Stehlik P. (2003) Cost estimation and energy price forecasts for economic evaluation of retrofit projects, Applied Thermal Engineering 23, 1819–1835. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.