Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Numéro 1, January–February 2016
Numéro d'article 16
Nombre de pages 14
DOI https://doi.org/10.2516/ogst/2014028
Publié en ligne 22 janvier 2016
  • Gordon J.M. (1988) On optimized solar-driven heat engines, Solar Energy 40, 457–461. [CrossRef] [Google Scholar]
  • Sahin A.Z. (2000) Optimum operating conditions of solar-driven heat engines, Energy Conversion and Management 41, 1335–1343. [CrossRef] [Google Scholar]
  • Koyun A. (2004) Performance analysis of a solar-driven heat engine with external irreversibilities under maximum power and power density condition, Energy Conversion and Management 45, 1941–1947. [CrossRef] [Google Scholar]
  • Sogut O.S., Durmayaz A. (2005) Performance optimization of a solar-driven heat engine with finite-rate heat transfer, Renewable Energy 30, 1329–1344. [CrossRef] [Google Scholar]
  • Yilmaz T., Ust Y., Erdil A. (2006) Optimum operating conditions of irreversible solar driven heat engines, Renewable Energy 31, 1333–1342. [CrossRef] [Google Scholar]
  • Ust Y. (2007) Effects of combined heat transfer on the thermoeconomic performance of irreversible solar-driven heat engines, Renewable Energy 32, 2085–2095. [CrossRef] [Google Scholar]
  • Barranco-Jiménez M.A., Sánchez-Salas N. (2008) On thermodynamic optimization of solar collector model under maximum ecological conditions, Journal of the Energy Institute 81, 164–167. [CrossRef] [Google Scholar]
  • Blank D.A., Wu C. (1998) Finite-time power limit for solar-radiant Ericsson engines in space applications, Applied Thermal Engineering 18, 1347–1357. [CrossRef] [Google Scholar]
  • Bädescu V. (1992) Optimum operation of a solar converter in combination with a Stirling or Ericsson heat engine, Energy 17, 601–607. [CrossRef] [Google Scholar]
  • Ahmadi M.H., Hosseinzade H., Sayyaadi H., Mohammadi A.H., Kimiaghalam F. (2013) Application of the multi-objective optimization method for designing a powered Stirling heat engine: design with maximized power, thermal efficiency and minimized pressure loss, Renewable Energy 60, 313–322. [CrossRef] [Google Scholar]
  • Ahmadi M.H., Sayyaadi H., Dehghani S., Hosseinzade H. (2013) Designing a solar powered Stirling heat engine based on multiple criteria: maximized thermal efficiency and power, Energy Conversion and Management 75, 282–291. [CrossRef] [Google Scholar]
  • Ahmadi M.H., Mohammadi A.H., Dehghani S., Barranco-Jiménez M.A. (2013) Multi-objective thermodynamic-based optimization of output power of solar dish-Stirling engine by implementing an evolutionary algorithm, Energy Conversion and Management 75, 438–445. [CrossRef] [Google Scholar]
  • Chen J., Yan Z., Chen L., Andresen B. (1998) Efficiency bound of a solar driven Stirling heat engine system, International Journal of Energy Research 22, 805–812. [CrossRef] [Google Scholar]
  • Zhang Y., Lin B., Chen J. (2005) The unified cycle model of aclass of solar-driven heat engines and their optimum performance characteristics, Journal of Applied Physics 97, 8490–8495. [Google Scholar]
  • Zheng S., Chen J., Lin G. (2005) Performance characteristics of an irreversible solar-driven Braysson heat engine at maximum efficiency, Renewable Energy 30, 601–610. [CrossRef] [Google Scholar]
  • Wu L., Lin G., Chen J. (2010) Parametric optimization of a solar-driven Braysson heat engine with variable heat capacity of the working fluid and radiation-convection heat losses, Renewable Energy 35, 95–100. [CrossRef] [Google Scholar]
  • Durmayaz A., Sogut O.S., Sahin B., Yamuz H. (2004) Optimization of thermal systems based on finite-time thermodynamics and thermo economics, Prog. Energy Combust. Sci. 30, 175–217. [CrossRef] [Google Scholar]
  • Cheng C.Y., Chen C.K. (1996) Power optimization of an endoreversible regenerative Brayton cycle, Energy 21, 241–247. [CrossRef] [Google Scholar]
  • Chen L.G., Sun F., Wu C., Kiang R.L. (1997) Theoretical analysis of the performance of our generative closed Brayton cycle with internal irreversibilities, Energy Conversion and Management 3, 871–877. [CrossRef] [Google Scholar]
  • Medina A., Roco J.M.M., Calvo Hernández A. (1996) Regenerative gas turbines at maximum power density conditions, J. Phys. D: Appl. Phys. 29, 2802–2805. [CrossRef] [Google Scholar]
  • Götkun S., Yavuz H. (1999) Thermal efficiency of a regenerative Brayton cycle with isothermal heat addition, Energy Conversion and Management 40, 1259–1266. [CrossRef] [Google Scholar]
  • Erbay L., Götkun S., Yarvuz H. (2001) Optimal design of the regenerative gas turbine engine with isothermal heat addition, Appl. Energy 6, 249–264. [CrossRef] [Google Scholar]
  • Vecchiarelli J., Kawall J.G., Wallace J.S. (1997) Analysis of a concept for increasing the efficiency of a Brayton cycle via isothermal heat addition, Int. J. Energy Res. 2, 113–127. [CrossRef] [Google Scholar]
  • Cheng C.Y., Chen C.K. (2000) Maximum power of an endoreversible intercooled Brayton cycle, Int. J. Energy Res. 24, 485–494. [CrossRef] [Google Scholar]
  • Wang W., Chen L., Sun F., Wu C. (2003) Performance analysis of an irreversible variable temperature heat reservoir closed intercooled regenerated Brayton cycle, Energy Conversion and Management 44, 2713–2732. [CrossRef] [Google Scholar]
  • Calvo Hernández A., Roco J.M.M., Medina A. (1996) Power and efficiency in a regenerative gas-turbine with multiple reheating and intercooling stages, J. Phys. D: Appl. Phys. 29, 1462–1468. [CrossRef] [Google Scholar]
  • Sogut O.S., Ust Y., Sahin B. (2006) The effects of intercooling and regeneration on the thermo-ecological performance analysis of an irreversible-closed Brayton heat engine with variable temperature thermal reservoirs, J. Phys. D: Appl. Phys. 39, 4713–4721. [CrossRef] [Google Scholar]
  • Tyagi J.K., Chen G.M., Wang Q., Kaushik S.C. (2006) Thermodynamic analysis and parametric study of an irreversible regenerative-intercooled-reheat Brayton cycle, Int. J. Therm. Sci. 45, 829–840. [CrossRef] [Google Scholar]
  • Calvo Hernández A., Medina A., Roco J.M.M. (1995) Power and efficiency in a regenerative gas turbine, J. Phys. D: Appl. Phys. 28, 2020–2023. [CrossRef] [Google Scholar]
  • Sánchez-Orgaz S., Medina A., Calvo Hernández A. (2010) Thermodynamic model and optimization of a multi-step irreversible Brayton cycle, Energy Conversion and Management 51, 2134–2143. [CrossRef] [Google Scholar]
  • Bejan A. (1988) Theory of heat transfer irreversible power plants, Int. J. Heat Mass Transfer 31, 1222–1229. [Google Scholar]
  • Landsberg P.T., Leff H.S. (1989) Thermodynamic cycles with nearly universal maximum-work efficiencies, J. Phys. A 22, 4019–4026. [CrossRef] [MathSciNet] [Google Scholar]
  • Chen L., Zeng J., Sun F., Wu C. (2001) Power density analysis and optimization of a regenerated closed variable-temperature heat reservoir Brayton cycle, J. Phys. D: Appl. Phys. 34, 1727–1739. [CrossRef] [Google Scholar]
  • Sahin B., Kodal A., Kaya S.S. (1998) A comparative performance analysis of irreversible reheating Joule–Brayton engines under maximum power density and maximum power conditions, J. Phys. D: Appl. Phys. 31, 2125–2131. [CrossRef] [Google Scholar]
  • Ust Y., Sahin B., Kodal A., Akcay I.H. (2006) Ecological coefficient of performance analysis and optimization of an irreversible regenerative-Brayton heat engine, Appl. Energy 83, 558–572. [CrossRef] [Google Scholar]
  • Angulo-Brown F. (1991) An ecological optimization criterion for finite-time heat engines, J. Appl. Phys. 69, 7465–7469. [CrossRef] [Google Scholar]
  • Sieniutycz S., Salamon P. eds (1990) Finite-time thermodynamics and thermo-economics, Taylor & Francis. [Google Scholar]
  • Valero A., Correas L., Serra L. (1999) Thermodynamic optimization of complex energy systems, Kluwer, p. 117. [CrossRef] [Google Scholar]
  • Calvo Hernández A., Medina A., Roco J.M.M., White J.A., Velasco S. (2001) Unified optimization criterion for energy converters, Phys. Rev. E. 63, 0371021–0371023. [Google Scholar]
  • Chen J. (1994) The maximum power output and maximum efficiency of an irreversible Carnot engine, J. Phys. D: Appl. Phys. 27, 1144–1149. [CrossRef] [Google Scholar]
  • Arias-Hernandez L.A., Barranco-Jiménez M.A., Angulo-Brown F. (2009) Comparative analysis of two ecological type modes of performance for a simple energy converter, J. Energy Inst. 82, 223–227. [CrossRef] [Google Scholar]
  • Dong Y., El-Bakkali A., Feidt M., Descombes G., Périlhon C. (2012) Association of Finite-Dimension Thermodynamics and a Bond-Graph Approach for Modeling an Irreversible Heat Engine, Entropy 14, 1234–1258. [CrossRef] [Google Scholar]
  • Holland J.H. (1975) Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor. [Google Scholar]
  • Salcedo R., Antipova E., Boer D., Jiménez L., Guillén-Gosálbez G. (2012) Multi-objective optimization of solar Rankine cycles coupled with reverse osmosis desalination considering economic and life cycle environmental concerns, desalination 286, 358–371. [CrossRef] [Google Scholar]
  • Moura P.S., de Almeida A.T. (2010) Multi-objective optimization of a mixed renewable system with demand-side management, Renewable and Sustainable Energy Reviews 14, 1461–1468. [CrossRef] [Google Scholar]
  • Ahmadi M.H., Mohammadi A.H., Dehghani S., Feidt M., Barranco-Jiménez M.A. (2013) Optimal design of a solar driven heat engine based on thermal and thermo-economic criteria, Energy Conversion and Management 75, 635–642. [CrossRef] [Google Scholar]
  • Ahmadi M.H., Mohammadi A.H., Dehghani S. (2013) Evaluation of the maximized power of a regenerative endoreversible Stirling cycle using the thermodynamic analysis, Energy Conversion and Management 76, 561–570. [CrossRef] [Google Scholar]
  • Mohammad H. Ahmadi, Amir H. Mohammadi, S. Mohsen Pourkiaei (2014): Optimization of the thermodynamic performance of the Stirling engine, International Journal of Ambient Energy, DOI:10.80/01430750.2014.907211. [Google Scholar]
  • Lazzaretto A., Toffolo A. (2004) Energy, economy and environment as objectives in multi-criterion optimization of thermal systems design, Energy 29, 1139–1157. [CrossRef] [Google Scholar]
  • Toffolo A., Lazzaretto A. (2002) Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design, Energy 27, 549–567. [CrossRef] [Google Scholar]
  • Dhanalakshmi S., Kannan S., Mahadevan K., Baskar S. (2011) Application of modified NSGA-II algorithm to combined economic and emission dispatch problem, Int. J. Electr. Power Energy Syst. 33 4, 992–1002. [CrossRef] [Google Scholar]
  • Pires D.F., Antunes C.H., Martins A.G. (2012) NSGA-II with local search for a multi-objective reactive power compensation problem, Int. J. Electr. Power Energy Syst. 43 1, 313–324. [CrossRef] [Google Scholar]
  • Hoseyn Sayyaadi, Mohammad Hossein Ahmadi, Saeed Dehghani (2014) Optimal Design of a Solar-Driven Heat Engine Based on Thermal and Ecological Criteria, J. Energy Eng., 10.1061/(ASCE)EY.1943-7897.0000191, 04014012. [Google Scholar]
  • Najafi H., Najafi B. (2010) Multi-objective optimization of a plate and frame heat exchanger via genetic algorithm, Heat Mass Transfer 46, 639–647. [CrossRef] [Google Scholar]
  • Ahmadi M.H., Ahmadi M.A., Mohammadi A.H., Feidt M., Pourkiaei S.M. (2014) Multi-objective optimization of an irreversible Stirling cryogenic refrigerator cycle, Energy Conversion and Management 82, 351–360. [CrossRef] [Google Scholar]
  • Sánchez-Orgaz S., Medina A., Calvo Hernández A. (2013) Recuperative solar-driven multi-step gas turbine power plants, Energy Conversion and Management 67, 171–178. [CrossRef] [Google Scholar]
  • Duffie J.A., Beckman W.A. (2006) Solar Engineering of Thermal Processes, John Wiley and Sons, Hoboken, New Jersey. [Google Scholar]
  • Zhang Y., Lin B., Chen J. (2007) Optimum performance characteristics of an irreversible solar-driven Brayton heat engine at the maximum overall efficiency, Renewable Energy 32, 856–867. [CrossRef] [Google Scholar]
  • Sánchez-Orgaz S., Medina A., Calvo Hernández A. (2012) Maximum overall efficiency for a solar-driven gas turbine power plants, Int. J. Energy Res. 37 13, 1580–1591. [CrossRef] [Google Scholar]
  • Ahmadi M.H., Ahmadi M.A., Mohammadi A.H., Mehrpooya M., Feidt M. (2014) Thermodynamic optimization of Stirling heat pump based on multiple criteria, Energy Conversion and Management 80, 319–328. [CrossRef] [Google Scholar]
  • Toghyani S., Kasaeian A., Ahmadi M.H. (2014) Multi-objective optimization of Stirling engine using non-ideal adiabatic method, Energy Conversion and Management 80, 54–62. [CrossRef] [Google Scholar]
  • Taal M., Bulatov I., Klemeš J., Stehlik P. (2003) Cost estimation and energy price forecasts for economic evaluation of retrofit projects, Applied Thermal Engineering 23, 1819–1835. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.