IFP Energies nouvelles International Conference: PHOTO4E – Photocatalysis for energy
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Number 5, September–October 2015
IFP Energies nouvelles International Conference: PHOTO4E – Photocatalysis for energy
Page(s) 799 - 815
DOI https://doi.org/10.2516/ogst/2015034
Published online 17 November 2015
  • Annual Energy Outlook (2014) Energy Information Administration U.S. Department of Energy Washington, DC 2015, http://www.eia.gov/forecasts/aeo. [Google Scholar]
  • World Energy Outlook (WEO) 2013 and 2014, International Energy Agency, http://www.iea.org/publications [Google Scholar]
  • National Renewable Energy Laboratory (NREL) (2013) Realizing a Clean Energy Future: Highlights of NREL Analysis, NREL/BR-6A20-60894, Dec., available at http://www.nrel.gov/docs/fy14osti/60894.pdf (24 Feb. 2015). [Google Scholar]
  • Centi G., Perathoner S. (2014) Perspectives and state of the art in producing solar fuels and chemicals from CO2, in Green Carbon Dioxide, Centi G., Perathoner S. (eds), Wiley & Sons, New York, US, Chap. 1, pp. 1–24. [CrossRef] [Google Scholar]
  • Protti S., Albini A., Serpone N. (2014) Photocatalytic generation of solar fuels from the reduction of H2O and CO2: a look at the patent literature, Phys. Chem. Chem. Phys. 16, 19790–19827. [CrossRef] [PubMed] [Google Scholar]
  • Thomas J.M. (2014) Reflections on the topic of solar fuels, Energy Environ. Sci. 7, 19–20. [CrossRef] [Google Scholar]
  • Centi G., Perathoner S. (2010) Towards Solar Fuels from Water and CO2, ChemSusChem 3, 195–208. [CrossRef] [PubMed] [Google Scholar]
  • Faunce T.A. (2012) Future perspectives on solar fuels, RSC Energy and Env. Series 5, 506–528. [Google Scholar]
  • Ampelli C., Perathoner S., Centi G. (2015) CO2 utilization: an enabling element to move to a resource-and energy-efficient chemical and fuel production, Phil. Trans. R Soc. A: Math. 373, 20140177. [CrossRef] [Google Scholar]
  • Centi G., Quadrelli E.A., Perathoner S. (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries, Energy Environ. Sci. 6, 1711–1731. [CrossRef] [Google Scholar]
  • Perathoner S., Centi G. (2014) CO2 Recycling: A Key Strategy to Introduce Green Energy in the Chemical Production Chain, ChemSusChem 7, 1274–1282. [CrossRef] [PubMed] [Google Scholar]
  • Lanzafame P., Centi G., Perathoner S. (2014) Catalysis for biomass and CO2 use through solar energy: opening new scenarios for a sustainable and low-carbon chemical production, Chem. Soc. Rev. 43, 7562–7580. [CrossRef] [PubMed] [Google Scholar]
  • Honda M., Tamura M., Nakagawa Y., Tomishige K. (2014) Catalytic CO2 conversion to organic carbonates with alcohols in combination with dehydration system, Catal. Sci. Technol. 4, 2830–2845. [CrossRef] [Google Scholar]
  • Das S., Wan Daud W.M.A. (2014) A review on advances in photocatalysts towards CO2 conversion, RSC Adv. 4, 20856–20893. [CrossRef] [Google Scholar]
  • Taheri Najafabadi A. (2013) CO2 chemical conversion to useful products: An engineering insight to the latest advances toward sustainability, Int. J. Energy Res. 37, 485–499. [CrossRef] [Google Scholar]
  • Aresta M., Dibenedetto A., Angelini A. (2013) The changing paradigm in CO2 utilization, J. CO2 Utilization 3-4, 65–73. [Google Scholar]
  • Aresta M., Dibenedetto A., Angelini A. (2014) Catalysis for the Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2, Chem. Rev. 114, 1709–1742. [CrossRef] [PubMed] [Google Scholar]
  • Markewitz P., Kuckshinrichs W., Leitner W., Linssen J., Zapp P., Bongartz R., Schreiber A., Mueller T.E. (2012) Worldwide innovations in the development of carbon capture technologies and the utilization of CO2, Energy Environ. Sci. 5, 7281–7305. [CrossRef] [Google Scholar]
  • Centi G., Perathoner S., Passalacqua R., Ampelli C. (2011) Solar production of fuels from water and CO2, in Carbon-neutral Fuels and Energy Carriers: Science and Technology, Muradov N., Veziroglu T.N. (eds), CRC Press (Taylor & Francis group), Boca Raton, FL, US, pp. 291–323. [Google Scholar]
  • Scholes G.D., Fleming G.R., Olaya-Castro A., van Grondelle R. (2011) Lessons from nature about solar light harvesting, Nature Chem. 3, 763–774. [Google Scholar]
  • Haije W., Geerlings H. (2011) Efficient production of solar fuel using existing large scale production technologies, Env. Sci. Technol. 45, 8609–8610. [CrossRef] [PubMed] [Google Scholar]
  • Bensaid S., Centi G., Garrone E., Perathoner S., Saracco G. (2012) Towards artificial leaves for solar hydrogen and fuels from carbon dioxide, ChemSusChem 5, 500–521. [CrossRef] [PubMed] [Google Scholar]
  • Moore G.F., Brudvig G.W. (2011) Energy conversion in photosynthesis: a paradigm for solar fuel production, Ann. Review Cond. Matter Phys. 2, 303–327. [CrossRef] [Google Scholar]
  • Cogdell R.J., Brotosudarmo T.H.P., Gardiner A.T., Sanchez P.M., Cronin L. (2010) Artificial photosynthesis—solar fuels: current status and future prospects, Biofuels 1, 861–876. [CrossRef] [Google Scholar]
  • Bard A.J., Fox M.A. (1995) Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen, Acc. Chem. Res. 28, 141–145. [CrossRef] [Google Scholar]
  • Centi G., Perathoner S. (2013) Photoelectrochemical CO2 activation toward artificial leaves, in Chemical Energy Storage, Schlögl R.(ed.), De Gruyter, Berlin, Germany, Chap. 5.1, pp. 379–400. [Google Scholar]
  • Joya K.S., de Groot H.J.M. (2014) Artificial leaf goes simpler and more efficient for solar fuel generation, ChemSusChem 7, 73–76. [CrossRef] [PubMed] [Google Scholar]
  • Joya K.S., Joya Y.F., Ocakoglu K., van de Krol R. (2013) Water-splitting catalysis and solar fuel devices: artificial leaves on the move, Ang. Chem. Int. Ed. 52, 10426–10437. [Google Scholar]
  • Barber J., Tran P.D. (2013) From natural to artificial photosynthesis, J. Royal Soc. Interface 10, 20120984/1-20120984/16. [CrossRef] [Google Scholar]
  • Nocera D.G. (2012) The Artificial Leaf, Acc. Chem. Res. 45, 767–776. [CrossRef] [PubMed] [Google Scholar]
  • Roy S.C., Varghese O.K., Paulose M., Grimes C.A. (2010) Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons, ACS Nano 4, 3, 1259–1278. [CrossRef] [PubMed] [Google Scholar]
  • Inglis J.L., MacLean B.J., Pryce M.T., Vos J.G. (2012) Electrocatalytic Pathways towards sustainable fuel production from water and CO2, Coord. Chem. Rev. 256, 2571–2600. [CrossRef] [Google Scholar]
  • Izumi Y. (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond, Coord. Chem. Rev. 257, 171–186. [CrossRef] [Google Scholar]
  • Lei Y., Nuraje N., Yashkarova M., Kudaibergenov S. (2012) Solar fuels harvesting from carbon dioxide conversions, Nanoscience & Nanotechn.-Asia 2, 110–126. [CrossRef] [Google Scholar]
  • Sivula K. (2013) Solar-to-chemical energy conversion with photoelectrochemical tandem cells, Chimia 67, 155–161. [CrossRef] [PubMed] [Google Scholar]
  • Artero V., Fontecave M. (2013) Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis? Chem. Soc. Rev. 42, 2338–2356. [CrossRef] [PubMed] [Google Scholar]
  • Smestad G.P., Steinfeld A. (2012) Photochemical and Thermochemical Production of Solar Fuels from H2O and CO2 Using Metal Oxide Catalysts, Ind. & Eng. Chem. Res. 51, 11828–11840. [CrossRef] [Google Scholar]
  • Quadrelli E.A., Centi G., Duplan J.-L., Perathoner S. (2011) Carbon dioxide recycling: emerging large-scale technologies with industrial potential, ChemSusChem 4, 9, 1194–1215. [CrossRef] [PubMed] [Google Scholar]
  • Graham-Rowe D. (2008) Turning CO2 back into hydrocarbons, New Scientist, March 03. [Google Scholar]
  • McKenna P. (2010) Emission control: Turning carbon trash into treasure, New Scientist, Sept. 29. [Google Scholar]
  • Ritter S.K. (2007) What can we do with carbon dioxide? Chem. Eng. News 85, 11–17. [Google Scholar]
  • Aresta M. (ed.) (2010) Carbon Dioxide as Chemical Feedstock, Wiley-VCH, Weinheim, Germany. [CrossRef] [Google Scholar]
  • Peters M., Köhler B., Kuckshinrichs W., Leitner W., Markewitz P., Müller T.E. (2011) Chemical technologies for exploiting and recycling carbon dioxide into the value chain, ChemSusChem 4, 1216–1240. [CrossRef] [PubMed] [Google Scholar]
  • Peters M., Müller T., Leitner W. (2009) CO2: from waste to value, The Chemical Engineer: TCE 813, 46–47. [Google Scholar]
  • Mikkelsen M., Jorgensen M., Krebs F.C. (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide, Energy Environ. Sci. 3, 43–81. [CrossRef] [Google Scholar]
  • Olah G.A., Goeppert A., Surya Prakash G.K. (2009) Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons, J. Org. Chem. 74, 2, 487–498. [Google Scholar]
  • Olah G.A., Goeppert A., Surya Prakash G.K. (2009) Beyond Oil and Gas: The Methanol Economy, 2nd edn., Wiley-VCH, Weinheim, Germany. [CrossRef] [Google Scholar]
  • Sakakura T., Choi J.-C., Yasuda H. (2007) Transformation of carbon dioxide, Chem. Rev. 107, 2365–2387. [CrossRef] [PubMed] [Google Scholar]
  • Ma J., Sun N., Zhang X., Zhao N., Xiao F., Wei W., Sun Y. (2009) A short review of catalysis for CO2 conversion, Catal. Today 148, 221–231. [CrossRef] [Google Scholar]
  • Song C. (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing, Catal. Today 115, 2–32. [Google Scholar]
  • Whipple D.T., Kenis P.J.A. (2010) Prospects of CO2 utilization via direct heterogeneous electrochemical reduction, J. Phys. Chem. Lett. 1, 3451–3458. [CrossRef] [Google Scholar]
  • Dorner R.W., Hardy D.R., Williams F.W., Willauer H.D. (2010) Heterogeneous catalytic CO2 conversion to value-added hydrocarbons, Energy Environ. Sci. 3, 884–890. [CrossRef] [Google Scholar]
  • Jiang Z., Xiao T., Kuznetsov V.L., Edwards P.P. (2010) Turning CO2 into fuel, Phil. Trans. R. Soc. A: Math. Phys. & Eng. Sciences 368, 3343–3364. [CrossRef] [Google Scholar]
  • Agarwal A.S., Zhai Y., Hill D., Sridhar N. (2011) The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility, ChemSusChem 4, 1301–1310. [CrossRef] [PubMed] [Google Scholar]
  • Darensbourg D.J. (2007) Making Plastics from Carbon Dioxide: Salen Metal Complexes as Catalysts for the Production of Polycarbonates from Epoxides and CO2, Chem. Rev. 107, 6, 2388–2410. [CrossRef] [PubMed] [Google Scholar]
  • Zevenhoven R., Eloneva S., Teir S. (2006) Chemical fixation of CO2 in carbonates: Routes to valuable products and long-term storage, Catal. Today 115, 1-4, 73–79. [CrossRef] [Google Scholar]
  • De Falco M., Iaquaniello G., Centi G. (eds) (2013) CO2: A Valuable Source of Carbon, Green Energy and Technology, Springer, Heidelberg, Germany. [Google Scholar]
  • Kondratenko E.V., Mul G., Baltrusaitis J., Larrazabal G.O., Perez-Ramirez J. (2013) Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes, Energy Environ. Sci. 6, 3112–3135. [CrossRef] [Google Scholar]
  • Corma A., Garcia H. (2013) Photocatalytic reduction of CO2 for fuel production: Possibilities and challenges, J. Catal. 308, 168–175. [CrossRef] [Google Scholar]
  • Behrens M. (2014) Heterogeneous Catalysis of CO2 Conversion to Methanol on Copper Surfaces, Ang. Chem. Int. Ed. 53, 12022–12024. [CrossRef] [Google Scholar]
  • Li Y.-N., Ma R., He L.-N., Diao Z.-F. (2014) Homogeneous hydrogenation of carbon dioxide to methanol, Catal. Sci. Technol. 4, 1498–1512. [Google Scholar]
  • Babu V.J., Vempati S., Uyar T., Ramakrishna S. (2015) Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation, Phys. Chem. Chem. Phys. 17, 2960–2986. [CrossRef] [PubMed] [Google Scholar]
  • Ismail A.A., Bahnemann D.W. (2014) Photochemical splitting of water for hydrogen production by photocatalysis: A review, Solar Energy Materials Solar Cells 128, 85–101. [CrossRef] [Google Scholar]
  • Han Z., Eisenberg R. (2014) Fuel from Water: The Photochemical Generation of Hydrogen from Water, Acc. Chem. Res. 47, 2537–2544. [CrossRef] [PubMed] [Google Scholar]
  • Meier A., Steinfeld A. (2010) Solar thermochemical production of fuels, Adv. Sci. Technol. 74, 303–312. [CrossRef] [Google Scholar]
  • Bi L., Boulfrad S., Traversa E. (2014) Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides, Chem. Soc. Rev. 43, 8255–8270. [CrossRef] [PubMed] [Google Scholar]
  • Millet P., Ngameni R., Grigoriev S.A., Fateev V.N. (2011) Scientific and engineering issues related to PEM technology: Water electrolysers, fuel cells and unitized regenerative systems, Int. J. Hydrogen Energy 36, 4156–4163. [CrossRef] [Google Scholar]
  • Dinh Nguyen M.T., Ranjbari A., Catala L., Brisset F., Millet P., Aukauloo A. (2012) Implementing molecular catalysts for hydrogen production in proton exchange membrane water electrolyzers, Coord. Chem. Rev. 256, 2435–244. [CrossRef] [Google Scholar]
  • Barbato L., Centi G., Iaquaniello G., Mangiapane A., Perathoner S. (2014) Trading Renewable Energy by using CO2: An Effective Option to Mitigate Climate Change and Increase the use of Renewable Energy Sources, Energy Technol. 2, 453–461. [CrossRef] [Google Scholar]
  • Ampelli C., Centi G., Passalacqua R., Perathoner S. (2010) Synthesis of solar fuels by a novel photoelectrocatalytic approach, Energy Environ. Sci. 3, 292–301. [Google Scholar]
  • Ampelli C., Genovese C., Passalacqua R., Perathoner S., Centi G. (2012) The use of a solar photoelectrochemical reactor for sustainable production of energy, Theor. Found. Chem. Eng. 46, 6, 651–657. [CrossRef] [Google Scholar]
  • Genovese C., Ampelli C., Perathoner S., Centi G. (2013) Electrocatalytic conversion of CO2 on carbon nanotube-based electrodes for producing solar fuels, J. Catal. 308, 237–249. [CrossRef] [Google Scholar]
  • Ampelli C., Passalacqua R., Genovese C., Perathoner S., Centi G., Montini T., Gombac V., Delgado Jaen J.J., Fornasiero P. (2013) H2 production by selective photo-dehydrogenation of ethanol in gas and liquid phase on CuOx/TiO2 nanocomposites, RSC Advances 3, 21776–21788. [CrossRef] [Google Scholar]
  • Dechema (2009) Position Paper on the Utilisation and Storage of CO2, Verband der Chemischen Industrie e.V, Germany. [Google Scholar]
  • Dechema/IEA/ICCA (2013) Technology Roadmap “Energy and GHG Reductions in the Chemical Industry via Catalytic Processes”, Dechema, Germany. [Google Scholar]
  • Frost & Sullivan Corp. (2013) Market Assessment of Energy Conservation and Recovery Technologies for CO2 Reduction in Europe and North America, Frost & Sullivan, US. [Google Scholar]
  • Parsons Brinckerhoff/Global CCS Institute (2011) Accelerating the uptake of CCS: industrial use of captured CO2, Global CCS Institute, US. [Google Scholar]
  • Thybaud N., Lebain D. (2010) Panorama des voies de valorisation du CO2, Agence de l’Environnement et de la Maîtrise de l’Énergie, France. [Google Scholar]
  • SPIRE (Sustainable Process Industry through Resource and Energy Efficiency (2013) SPIRE Roadmap, http://www.spire2030.eu/uploads/Modules/Documents/spire-roadmap_broch_july2013_pbp.pdf. [Google Scholar]
  • CEFIC (The European Chemical Industry Council (2013) European chemistry for growth. Unlocking a competitive, low carbon and energy efficient future. http://www.cefic.org/Documents/PolicyCentre/Energy-Roadmap-The%20Report-European-chemistry-for-growth.pdf. [Google Scholar]
  • Centi G., van Santen R.A. (2009) Catalysis for Renewables: From Feedstock to Energy Production, Wiley-VCH Pub, Germany. [Google Scholar]
  • Meyer T.J. (1989) Chemical approaches to artificial photosynthesis, Acc. Chem. Res. 22, 5, 163–170. [CrossRef] [Google Scholar]
  • Liu C., Dasgupta N.P., Yang P. (2014) Semiconductor nanowires for artificial photosynthesis, Chem. Mater. 26, 415–422. [CrossRef] [Google Scholar]
  • Joya K.S., Joya Y.F., Ocakoglu K., van de Krol R. (2013) Water-splitting catalysis and solar fuel devices: artificial leaves on the move, Angew. Chem. Int. Ed. 52, 10426–10437. [CrossRef] [Google Scholar]
  • Kaerkaes M.D., Johnston E.V., Verho O., Aakermark B. (2014) Artificial Photosynthesis: From Nanosecond Electron Transfer to Catalytic Water Oxidation, Acc. Chem. Res. 47, 100–111. [CrossRef] [PubMed] [Google Scholar]
  • Fukuzumi S., Yamada Y. (2013) Shape- and Size-Controlled Nanomaterials for Artificial Photosynthesis, ChemSusChem 6, 1834–1847. [CrossRef] [PubMed] [Google Scholar]
  • Maeda K. (2013) Z-Scheme Water Splitting Using Two Different Semiconductor Photocatalysts, ACS Catal. 3, 1486–1503. [CrossRef] [Google Scholar]
  • Zhang Y.H.P., You C., Chen H., Feng R. (2012) Surpassing photosynthesis: high-efficiency and scalable CO2 utilization through artificial photosynthesis, ACS Symp. Series 1097, 275–292, (Recent Advances in Post-Combustion CO2 Capture Chemistry). [CrossRef] [Google Scholar]
  • Savage L. (2013) Artificial photosynthesis: saving energy for rainy day, Optics & Photonics News 24, 18–25. [CrossRef] [Google Scholar]
  • Dzhabiev T.S., Shilov A.E. (2012) Biomimetic utilization of solar energy, Russian Chem. Rev. 81, 1146–1158. [CrossRef] [Google Scholar]
  • Lee S.H., Kim J.H., Park C.B. (2013) Coupling Photocatalysis and Redox Biocatalysis toward Biocatalyzed Artificial Photosynthesis, Chem. - A Eur. J. 19, 4392–4406. [CrossRef] [Google Scholar]
  • Osterloh F.E. (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting, Chem. Soc. Rev. 42, 2294–2320. [CrossRef] [PubMed] [Google Scholar]
  • Frischmann P.D., Mahata K., Wuerthner F. (2013) Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies, Chem. Soc. Rev. 42, 1847–1870. [CrossRef] [PubMed] [Google Scholar]
  • Bora D.K., Braun A., Constable E.C. (2013) “In rust we trust”. Hematite - the prospective inorganic backbone for artificial photosynthesis, Energy Env. Sci. 6, 407–425. [CrossRef] [Google Scholar]
  • Concepcion J.J., House R.L., Papanikolas J.M., Meyer T.J. (2012) Chemical approaches to artificial photosynthesis, PNAS 109, 15560–15564. [CrossRef] [Google Scholar]
  • Najafpour M.M., Rahimi F., Aro E.M., Lee C.H., Allakhverdiev S.I. (2012) Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review, J. Royal Soc. Interface 9, 2383–2395. [CrossRef] [Google Scholar]
  • Barroso M., Arnaut L.G., Formosinho S.J. (2012) Proton-coupled electron transfer in natural and artificial photosynthesis, RSC Catal. Series 9, 126–151. [Google Scholar]
  • Cogdell R.J., Gardiner A.T., Cronin L. (2012) Learning from photosynthesis: how to use solar energy to make fuels, Phil. Trans. R. Soc. A: Math. Phys. & Eng. Sci. 370, 3819–3826. [CrossRef] [Google Scholar]
  • Tachibana Y., Vayssieres L., Durrant J.R. (2012) Artificial photosynthesis for solar water-splitting, Nature Photonics 6, 511–518. [CrossRef] [Google Scholar]
  • Magnuson A., Styring S. (2012) Molecular Chemistry for Solar Fuels: From Natural to Artificial Photosynthesis, Australian J. Chem. 65, 564–572. [CrossRef] [Google Scholar]
  • Yang J., Yoon M.C., Yoo H., Kim P., Kim D. (2012) Excitation energy transfer in multiporphyrin arrays with cyclic architectures: towards artificial light-harvesting antenna complexes, Chem. Soc. Rev. 41, 4808–4826. [CrossRef] [PubMed] [Google Scholar]
  • Vlcek A. (2012) Solar fuels, Coord. Chem. Rev. 256, 2397–2398. [CrossRef] [Google Scholar]
  • Carraro M., Sartorel A., Toma F.M., Puntoriero F., Scandola F., Campagna S., Prato M., Bonchio M. (2011) Artificial photosynthesis challenges: water oxidation at nanostructured interfaces, Topics in Current Chem. 303, 121–150. [CrossRef] [Google Scholar]
  • Bottari G., Trukhina O., Ince M., Torres T. (2012) Towards artificial photosynthesis: Supramolecular, donor-acceptor, porphyrin- and phthalocyanine/carbon nanostructure ensembles, Coord. Chem. Rev. 256, 2453–2477. [CrossRef] [Google Scholar]
  • Rivalta I., Brudvig G.W., Batista V.S. (2012) Oxomanganese complexes for natural and artificial photosynthesis, Current Opinion in Chem, Biol. 16, 11–18. [CrossRef] [Google Scholar]
  • Fukuzumi S., Ohkubo K. (2012) Assemblies of artificial photosynthetic reaction centers, J. Mat. Chem. 22, 4575–4587. [CrossRef] [Google Scholar]
  • Larkum A.W.D. (2012) Harvesting solar energy through natural or artificial photosynthesis: scientific, social political and economic implications, RSC Energy and Env. Series 5, 1–19. [Google Scholar]
  • Arifi K., Majlan E.H., Wan Daud W.R., Kassim M.B. (2012) Bimetallic complexes in artificial photosynthesis for hydrogen production: A review, Int. J. Hydrogen Energy 37, 3066–3087. [CrossRef] [Google Scholar]
  • Andreiadis E.S., Chavarot-Kerlidou M., Fontecave M., Artero V. (2011) Artificial photosynthesis: From molecular catalysts for light-driven water splitting to photoelectrochemical cells, Photochem. Photobiol. 87, 946–964. [CrossRef] [PubMed] [Google Scholar]
  • Hammarstrom L., Styring S. (2011) Proton-coupled electron transfer of tyrosines in photosystem II and model systems for artificial photosynthesis: the role of a redox-active link between catalyst and photosensitizer, Energy Environ. Sci. 4, 2379–2388. [CrossRef] [Google Scholar]
  • Herrero C., Quaranta A., Leibl W., Rutherford A.W., Aukauloo A. (2011) Artificial photosynthetic systems. Using light and water to provide electrons and protons for the synthesis of a fuel, Energy Environ. Sci. 4, 2353–2365. [CrossRef] [Google Scholar]
  • Song W., Chen Z., Brennaman M.K., Concepcion J.J., Patrocinio A.O.T., Iha N.Y.M., Meyer T.J. (2011) Making solar fuels by artificial photosynthesis, Pure Applied Chem. 83, 749–768. [CrossRef] [Google Scholar]
  • Hoffmann M.R., Moss J.A., Baum M.M. (2011) Artificial photosynthesis: semiconductor photocatalytic fixation of CO2 to afford higher organic compounds, Dalton Trans. 40, 5151–5158. [CrossRef] [PubMed] [Google Scholar]
  • Yang C.-C., Yu Y.-H., van der Linden B., Wu J.C.S., Mul G. (2010) Artificial Photosynthesis over Crystalline TiO2-Based Catalysts: Fact or Fiction? J. Am. Chem. Soc. 132, 8398–8406. [CrossRef] [PubMed] [Google Scholar]
  • Ulagappan N., Frei H. (2000) Mechanistic Study of CO2 Photoreduction in Ti Silicalite Molecular Sieve by FT-IR Spectroscopy, J. Phys. Chem. A 104, 33, 7834–7839. [CrossRef] [Google Scholar]
  • Tu W., Zhou Y., Zou Z. (2014) Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects, Adv. Mater. 26, 4607–4626. [CrossRef] [PubMed] [Google Scholar]
  • Liu Q., Zhou Y., Kou J., Chen X., Tian Z., Gao J., Yan S., Zou Z. (2010) High-Yield Synthesis of Ultralong and Ultrathin Zn2GeO4 Nanoribbons toward Improved Photocatalytic Reduction of CO2 into Renewable Hydrocarbon Fuel, J. Am. Chem. Soc. 132, 14385–14387. [CrossRef] [PubMed] [Google Scholar]
  • Liu Q., Wu D., Zhou Y., Su H., Wang R., Zhang C., Yan S., Xiao M., Zou Z. (2014) Single-Crystalline, Ultrathin ZnGa2O4 Nanosheet Scaffolds To Promote Photocatalytic Activity in CO2 Reduction into Methane, ACS Appl. Mater. Interfaces 6, 2356–2361. [CrossRef] [Google Scholar]
  • Kaneco S., Iiba K., Hiei N.-H., Ohta K., Mizuno T., Suzuki T. (1999) Electrochemical Reduction of Carbon Dioxide to Ethylene with Faradaic Efficiency at a Cu Electrode in CsOH/Methanol, Electrochim. Acta 44, 4701–4706. [CrossRef] [Google Scholar]
  • Hara K., Sakata T. (1997) Large Current Density CO2 Reduction under High Pressure Using Gas Diffusion Electrodes, Bull. Chem. Soc. Jpn 70, 571–576. [CrossRef] [Google Scholar]
  • Sànchez-Sànchez C.M., Montiel V., Tryk D.A., Aldaz A., Fujishima A. (2001) Electrochemical Approaches to Alleviation of the Problem of Carbon Dioxide Accumulation, Pure Appl. Chem. 73, 1917–1927. [Google Scholar]
  • Salimon J., Kalaji M. (2003) Electrochemical Reduction of CO2 at Polycrystalline Copper in Aqueous Phosphate Buffered Solution: pH and Temperature Dependence, Malaysian J. Chem. 5, 23–29. [Google Scholar]
  • Kaneco S., Iiba K., Ohta K., Mizuno T. (1999) Electrochemical Reduction of Carbon Dioxide in Methanol with Various Potassium Supporting Electrolytes at Low Temperature, J. Solid State Electrochem. 3, 424–428. [CrossRef] [Google Scholar]
  • Centi G., Perathoner S. (2011) Nanostructured Electrodes and Devices for Converting Carbon Dioxide Back to Fuels: Advances and Perspectives, in Energy Efficiency and Renewable Energy Through Nanotechnology, Springer, Chap. 16, pp. 561–583. [CrossRef] [Google Scholar]
  • Centi G., Perathoner S. (2011) Creating and mastering nano-objects to design advanced catalytic materials, Coord. Chem. Rev. 255, 1480–1498. [CrossRef] [Google Scholar]
  • Centi G., Ampelli C., Genovese C., Marepally B.C., Papanikolaou G., Perathoner S. (2015) Electrocatalytic conversion of CO2 to produce solar fuels in electrolyte or electrolyte-less configurations of PEC cells, Faraday Discuss., Accepted Manuscript DOI: 10.1039/C5FD00069F (First published online 11 Jun 2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.