IFP Energies nouvelles International Conference: PHOTO4E – Photocatalysis for energy
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Number 5, September–October 2015
IFP Energies nouvelles International Conference: PHOTO4E – Photocatalysis for energy
Page(s) 877 - 889
DOI https://doi.org/10.2516/ogst/2015015
Published online 01 September 2015
  • Ampelli C., Centi G., Passalacqua R., Perathoner S. (2010) Synthesis of solar fuels by a novel photoelectrocatalytic approach, Energy & Environmental Science 3, 3, 253. [CrossRef] [Google Scholar]
  • Araña J., Doña-Rodríguez J.M., González-Díaz O., Tello Rendón E., Herrera Meliá J.a., Colón G., Navío J.a., Pérez Peña J. (2004) Gas-phase ethanol photocatalytic degradation study with TiO2 doped with Fe, Pd and Cu, Journal of Molecular Catalysis A: Chemical 215, 1-2, 153–160. [CrossRef] [Google Scholar]
  • Chen Q., Li J., Li X., Huang K., Zhou B., Shangguan W. (2013) Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination, ChemSusChem 6, 7, 1276–1281. [CrossRef] [PubMed] [Google Scholar]
  • Chen Z., Jaramillo T.F., Deutsch T.G., Kleiman-Shwarsctein A., Forman A.J., Gaillard N., Garland R., Takanabe K., Heske C., Sunkara M., McFarland E.W., Domen K., Miller E.L., Turner J.a., Dinh H.N. (2011) Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols, Journal of Materials Research 25, 01, 3–16. [Google Scholar]
  • Chen Z., Dinh H.N., Miller E. (2013) Photoelectrochemical water splitting Standards, Experimental Methods, and Protocols, Springer, New York. [CrossRef] [Google Scholar]
  • Conibeer G., Richards B. (2007) A comparison of PV/electrolyser and photoelectrolytic technologies for use in solar to hydrogen energy storage systems, International Journal of Hydrogen Energy 32, 14, 2703–2711. [Google Scholar]
  • Currao A., Reddy V.R., van Veen M.K., Schropp R.E.I., Calzaferri G. (2004) Water splitting with silver chloride photoanodes and amorphous silicon solar cells, Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology 3, 11-12, 1017–1025. [CrossRef] [Google Scholar]
  • Döscher H., Geisz J.F., Deutsch T.G., Turner J.A. (2014) Sunlight absorption in water – efficiency and design implications for photoelectrochemical devices, Energy & Environmental Science 7, 2951–2956. [Google Scholar]
  • Gessert T., Coutts T. (1990) Requirements of Electrical Contacts to Photovoltaic Solar Cells, MRS Proceedings. [Google Scholar]
  • Hagfeldt A., Lindström H. (1995) Photoelectrochemical studies of colloidal TiO 2 films: The effect of oxygen studied by photocurrent transients, Journal of Electroanalytical Chemistry 381, 39–46. [CrossRef] [Google Scholar]
  • Haussener S., Xiang C., Spurgeon J.M., Ardo S., Lewis N.S., Weber A.Z. (2012) Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems, Energy & Environmental Science 5, 12, 9922. [Google Scholar]
  • Haussener S., Hu S., Xiang C., Weber A.Z., Lewis N.S. (2013) Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems, Energy & Environmental Science 6, 12, 3605. [Google Scholar]
  • Hernández-Pagán E.a., Vargas-Barbosa N.M., Wang T., Zhao Y., Smotkin E.S., Mallouk T.E. (2012) Resistance and polarization losses in aqueous buffer–membrane electrolytes for water-splitting photoelectrochemical cells, Energy & Environmental Science 5, 6, 7582. [CrossRef] [Google Scholar]
  • Hiller J., Mendelsohn J.D., Rubner M.F. (2002) Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers, Nature Materials 1, 1, 59–63. [CrossRef] [PubMed] [Google Scholar]
  • Ichikawa S., Doi R. (1996), Hydrogen production from water and conversion of carbon dioxide to useful chemicals by room temperature photoelectrocatalysis, Catalysis Today 27, 12, 271–277 [CrossRef] [Google Scholar]
  • Jacobsson T.J., Fjällström V., Edoff M., Edvinsson T. (2014) Sustainable Solar Hydrogen Production: From Photoelectrochemical Cells to PV-Electrolysis and Back Again, Energy & Environmental Science 7, 2056–2070. [Google Scholar]
  • James B., Baum G.N., Perez J., Baum K.N. (2009), Technoeconomic analysis of photoelectrochemical (PEC) hydrogen production. [Google Scholar]
  • Jin J., Walczak K., Singh M.R., Karp C., Lewis N.S., Xiang C. (2014) An experimental and modeling/simulation-based evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system, Energy & Environmental Science 7, 10, 3371–3380. [CrossRef] [Google Scholar]
  • Kelly N., Gibson T. (2006) Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting, International Journal of Hydrogen Energy 31, 12, 1658–1673. [CrossRef] [Google Scholar]
  • Kelly N., Gibson T. (2008) Solar energy concentrating reactors for hydrogen production by photoelectrochemical water splitting, International Journal of Hydrogen Energy 33, 22, 6420–6431. [CrossRef] [Google Scholar]
  • Lopes T., Andrade L., Ribeiro H.A., Mendes A. (2010) Characterization of photoelectrochemical cells for water splitting by electrochemical impedance spectroscopy, International Journal of Hydrogen Energy 35, 20, 11601–11608. [CrossRef] [Google Scholar]
  • Lopes T., Dias P., Andrade L., Mendes A. (2014) An innovative photoelectrochemical lab device for solar water splitting, Solar Energy Materials and Solar Cells 128, 399–410. [CrossRef] [Google Scholar]
  • Mathiesen B., Lund H. (2009) Comparative analyses of seven technologies to facilitate the integration of fluctuating renewable energy sources, IET Renewable Power Generation 3, August 2008, 190–204. [Google Scholar]
  • Miller E.L., Rocheleau R.E., Deng X.M. (2003) Design considerations for a hybrid amorphous silicon/photoelectrochemical multijunction cell for hydrogen production, International Journal of Hydrogen Energy 28, 615–623. [CrossRef] [Google Scholar]
  • Minggu L.J., Wan Daud W.R., Kassim M.B. (2010) An overview of photocells and photoreactors for photoelectrochemical water splitting, International Journal of Hydrogen Energy 35, 11, 5233–5244. [CrossRef] [Google Scholar]
  • Modestino M.a., Walczak K., Berger A.D., Evans C.M., Haussener S., Koval C., Newman J., Ager J.W., Segalman R.a. (2014) Robust production of purified H2 in a stable, self-regulating, and continuously operating solar fuel generator, Energy & Environmental Science 7, 1, 297–301. [Google Scholar]
  • Newman J. (2013) Scaling with Ohm’s Law; Wired vs. Wireless Photoelectrochemical Cells, Journal of the Electrochemical Society 160, 3, F309–F311. [CrossRef] [Google Scholar]
  • Nielander A.C., Shaner M.R., Papadantonakis K.M., Francis S.a., Lewis N.S., (2014) A taxonomy for solar fuels generators, Energy Environ. Sci. 8, c, 16–25. [CrossRef] [Google Scholar]
  • Pinaud B.a, Benck J.D., Seitz L.C., Forman A.J., Chen Z., Deutsch T.G., James B.D., Baum K.N., Baum G.N., Ardo S., Wang H., Miller E.L., Jaramillo T.F. (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry, Energy & Environmental Science 6, 7, 1983. [Google Scholar]
  • Poodt P., Cameron D.C., Dickey E., George S.M., Kuznetsov V., Parsons G.N., Roozeboom F., Sundaram G., Vermeer A. (2012) Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 30, 1, 010802. [CrossRef] [Google Scholar]
  • Qian F., Wang G., Li Y. (2010) Solar-driven microbial photoelectrochemical cells with a nanowire photocathode, Nano Letters 10, 11, 4686–4691. [CrossRef] [PubMed] [Google Scholar]
  • Reece S., Hamel J., Sung K., Jarvi T., Esswein A.J., Pijpers J.J.H., Nocera D.G. (2011) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts, Science 334, 645–648. [CrossRef] [PubMed] [Google Scholar]
  • Rocheleau R.E., Miller E.L., Misra A. (1998) High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes, Energy & Fuels 12, 1, 3–10. [CrossRef] [Google Scholar]
  • Rongé J., Nijs D., Kerkhofs S., Masschaele K., Martens J. (2013) Chronoamperometric study of membrane electrode assembly operation in continuous flow photoelectrochemical water splitting, Physical Chemistry Chemical Physics 15, 23, 9315–9325. [CrossRef] [Google Scholar]
  • Rongé J., Bosserez T., Huguenin L., Dumortier M., Haussener S., Martens J. (2014a) Solar hydrogen reaching maturity, OGST - Revue d’IFP Energies Nouvelles (this issue). DOI: 10.2516/ogst/201406. [Google Scholar]
  • Rongé J., Bosserez T., Martel D., Nervi C., Boarino L., Taulelle F., Decher G., Bordiga S., Martens J.a. (2014b) Monolithic cells for solar fuels, Chemical Society Reviews 43, 7963–7981. [Google Scholar]
  • Rongé J., Deng S., Pulinthanathu Sree S., Bosserez T., Verbruggen S.W., Kumar Singh N., Dendooven J., Roeffaers M.B.J., Taulelle F., De Volder M., Detavernier C., Martens J.A. (2014c) Air-based photoelectrochemical cell capturing water molecules from ambient air for hydrogen production, RSC Advances 4, 55, 29286–29290. [Google Scholar]
  • Sathre R., Scown C.D., Morrow W.R., Stevens J.C., Sharp I.D., Ager J.W., Walczak K., Houle F.a., Greenblatt J.B. (2014) Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting, Energy & Environmental Science 7, 10, 3264–3278. [Google Scholar]
  • Schröder V., Emonts B., Janßen H., Schulze H.P. (2004) Explosion Limits of Hydrogen/Oxygen Mixtures at Initial Pressures up to 200 bar, Chemical Engineering & Technology 27, 8, 847–851. [CrossRef] [Google Scholar]
  • Seger B., Kamat P. (2009) Fuel cell geared in reverse: photocatalytic hydrogen production using a TiO2/Nafion/Pt membrane assembly with no applied bias, The Journal of Physical Chemistry C 113, 43, 18946–18952. [CrossRef] [Google Scholar]
  • Spurgeon J.M., Walter M.G., Zhou J., Kohl P. a., Lewis N.S. (2011) Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays, Energy & Environmental Science 4, 5, 1772–1780. [CrossRef] [Google Scholar]
  • van de Krol R., Grätzel M. (2012) Photoelectrochemical hydrogen production, Springer, New York. [Google Scholar]
  • Walczak K., Chen Y., Karp C., Beeman J.W., Shaner M., Spurgeon J., Sharp I.D., Amashukeli X., West W., Jin J., Lewis N.S., Xiang C. (2015) Modeling, Simulation, and Fabrication of a Fully Integrated, Acid-stable, Scalable Solar-Driven Water-Splitting System, ChemSusChem 8, 3, 544–551. [CrossRef] [PubMed] [Google Scholar]
  • Zhai P., Haussener S., Ager J., Sathre R., Walczak K., Greenblatt J., McKone T. (2013) Net primary energy balance of a solar-driven photoelectrochemical water-splitting device, Energy & Environmental Science 6, 8, 2380. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.