IFP Energies nouvelles International Conference: PHOTO4E – Photocatalysis for energy
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Number 5, September–October 2015
IFP Energies nouvelles International Conference: PHOTO4E – Photocatalysis for energy
Page(s) 877 - 889
DOI https://doi.org/10.2516/ogst/2015015
Published online 01 September 2015
  • Ampelli C., Centi G., Passalacqua R., Perathoner S. (2010) Synthesis of solar fuels by a novel photoelectrocatalytic approach, Energy & Environmental Science 3, 3, 253. [CrossRef]
  • Araña J., Doña-Rodríguez J.M., González-Díaz O., Tello Rendón E., Herrera Meliá J.a., Colón G., Navío J.a., Pérez Peña J. (2004) Gas-phase ethanol photocatalytic degradation study with TiO2 doped with Fe, Pd and Cu, Journal of Molecular Catalysis A: Chemical 215, 1-2, 153–160. [CrossRef]
  • Chen Q., Li J., Li X., Huang K., Zhou B., Shangguan W. (2013) Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination, ChemSusChem 6, 7, 1276–1281. [CrossRef] [PubMed]
  • Chen Z., Jaramillo T.F., Deutsch T.G., Kleiman-Shwarsctein A., Forman A.J., Gaillard N., Garland R., Takanabe K., Heske C., Sunkara M., McFarland E.W., Domen K., Miller E.L., Turner J.a., Dinh H.N. (2011) Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols, Journal of Materials Research 25, 01, 3–16. [CrossRef]
  • Chen Z., Dinh H.N., Miller E. (2013) Photoelectrochemical water splitting Standards, Experimental Methods, and Protocols, Springer, New York. [CrossRef]
  • Conibeer G., Richards B. (2007) A comparison of PV/electrolyser and photoelectrolytic technologies for use in solar to hydrogen energy storage systems, International Journal of Hydrogen Energy 32, 14, 2703–2711. [CrossRef]
  • Currao A., Reddy V.R., van Veen M.K., Schropp R.E.I., Calzaferri G. (2004) Water splitting with silver chloride photoanodes and amorphous silicon solar cells, Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology 3, 11-12, 1017–1025. [CrossRef]
  • Döscher H., Geisz J.F., Deutsch T.G., Turner J.A. (2014) Sunlight absorption in water – efficiency and design implications for photoelectrochemical devices, Energy & Environmental Science 7, 2951–2956. [CrossRef]
  • Gessert T., Coutts T. (1990) Requirements of Electrical Contacts to Photovoltaic Solar Cells, MRS Proceedings.
  • Hagfeldt A., Lindström H. (1995) Photoelectrochemical studies of colloidal TiO 2 films: The effect of oxygen studied by photocurrent transients, Journal of Electroanalytical Chemistry 381, 39–46. [CrossRef]
  • Haussener S., Xiang C., Spurgeon J.M., Ardo S., Lewis N.S., Weber A.Z. (2012) Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems, Energy & Environmental Science 5, 12, 9922. [CrossRef]
  • Haussener S., Hu S., Xiang C., Weber A.Z., Lewis N.S. (2013) Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems, Energy & Environmental Science 6, 12, 3605. [CrossRef]
  • Hernández-Pagán E.a., Vargas-Barbosa N.M., Wang T., Zhao Y., Smotkin E.S., Mallouk T.E. (2012) Resistance and polarization losses in aqueous buffer–membrane electrolytes for water-splitting photoelectrochemical cells, Energy & Environmental Science 5, 6, 7582. [CrossRef]
  • Hiller J., Mendelsohn J.D., Rubner M.F. (2002) Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers, Nature Materials 1, 1, 59–63. [CrossRef] [PubMed]
  • Ichikawa S., Doi R. (1996), Hydrogen production from water and conversion of carbon dioxide to useful chemicals by room temperature photoelectrocatalysis, Catalysis Today 27, 12, 271–277 [CrossRef]
  • Jacobsson T.J., Fjällström V., Edoff M., Edvinsson T. (2014) Sustainable Solar Hydrogen Production: From Photoelectrochemical Cells to PV-Electrolysis and Back Again, Energy & Environmental Science 7, 2056–2070. [CrossRef]
  • James B., Baum G.N., Perez J., Baum K.N. (2009), Technoeconomic analysis of photoelectrochemical (PEC) hydrogen production.
  • Jin J., Walczak K., Singh M.R., Karp C., Lewis N.S., Xiang C. (2014) An experimental and modeling/simulation-based evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system, Energy & Environmental Science 7, 10, 3371–3380. [CrossRef]
  • Kelly N., Gibson T. (2006) Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting, International Journal of Hydrogen Energy 31, 12, 1658–1673. [CrossRef]
  • Kelly N., Gibson T. (2008) Solar energy concentrating reactors for hydrogen production by photoelectrochemical water splitting, International Journal of Hydrogen Energy 33, 22, 6420–6431. [CrossRef]
  • Lopes T., Andrade L., Ribeiro H.A., Mendes A. (2010) Characterization of photoelectrochemical cells for water splitting by electrochemical impedance spectroscopy, International Journal of Hydrogen Energy 35, 20, 11601–11608. [CrossRef]
  • Lopes T., Dias P., Andrade L., Mendes A. (2014) An innovative photoelectrochemical lab device for solar water splitting, Solar Energy Materials and Solar Cells 128, 399–410. [CrossRef]
  • Mathiesen B., Lund H. (2009) Comparative analyses of seven technologies to facilitate the integration of fluctuating renewable energy sources, IET Renewable Power Generation 3, August 2008, 190–204. [CrossRef]
  • Miller E.L., Rocheleau R.E., Deng X.M. (2003) Design considerations for a hybrid amorphous silicon/photoelectrochemical multijunction cell for hydrogen production, International Journal of Hydrogen Energy 28, 615–623. [CrossRef]
  • Minggu L.J., Wan Daud W.R., Kassim M.B. (2010) An overview of photocells and photoreactors for photoelectrochemical water splitting, International Journal of Hydrogen Energy 35, 11, 5233–5244. [CrossRef]
  • Modestino M.a., Walczak K., Berger A.D., Evans C.M., Haussener S., Koval C., Newman J., Ager J.W., Segalman R.a. (2014) Robust production of purified H2 in a stable, self-regulating, and continuously operating solar fuel generator, Energy & Environmental Science 7, 1, 297–301. [CrossRef]
  • Newman J. (2013) Scaling with Ohm’s Law; Wired vs. Wireless Photoelectrochemical Cells, Journal of the Electrochemical Society 160, 3, F309–F311. [CrossRef]
  • Nielander A.C., Shaner M.R., Papadantonakis K.M., Francis S.a., Lewis N.S., (2014) A taxonomy for solar fuels generators, Energy Environ. Sci. 8, c, 16–25. [CrossRef]
  • Pinaud B.a, Benck J.D., Seitz L.C., Forman A.J., Chen Z., Deutsch T.G., James B.D., Baum K.N., Baum G.N., Ardo S., Wang H., Miller E.L., Jaramillo T.F. (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry, Energy & Environmental Science 6, 7, 1983. [CrossRef]
  • Poodt P., Cameron D.C., Dickey E., George S.M., Kuznetsov V., Parsons G.N., Roozeboom F., Sundaram G., Vermeer A. (2012) Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 30, 1, 010802. [CrossRef]
  • Qian F., Wang G., Li Y. (2010) Solar-driven microbial photoelectrochemical cells with a nanowire photocathode, Nano Letters 10, 11, 4686–4691. [CrossRef] [PubMed]
  • Reece S., Hamel J., Sung K., Jarvi T., Esswein A.J., Pijpers J.J.H., Nocera D.G. (2011) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts, Science 334, 645–648. [CrossRef] [PubMed]
  • Rocheleau R.E., Miller E.L., Misra A. (1998) High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes, Energy & Fuels 12, 1, 3–10. [CrossRef]
  • Rongé J., Nijs D., Kerkhofs S., Masschaele K., Martens J. (2013) Chronoamperometric study of membrane electrode assembly operation in continuous flow photoelectrochemical water splitting, Physical Chemistry Chemical Physics 15, 23, 9315–9325. [CrossRef]
  • Rongé J., Bosserez T., Huguenin L., Dumortier M., Haussener S., Martens J. (2014a) Solar hydrogen reaching maturity, OGST - Revue d’IFP Energies Nouvelles (this issue). DOI: 10.2516/ogst/201406.
  • Rongé J., Bosserez T., Martel D., Nervi C., Boarino L., Taulelle F., Decher G., Bordiga S., Martens J.a. (2014b) Monolithic cells for solar fuels, Chemical Society Reviews 43, 7963–7981. [CrossRef] [PubMed]
  • Rongé J., Deng S., Pulinthanathu Sree S., Bosserez T., Verbruggen S.W., Kumar Singh N., Dendooven J., Roeffaers M.B.J., Taulelle F., De Volder M., Detavernier C., Martens J.A. (2014c) Air-based photoelectrochemical cell capturing water molecules from ambient air for hydrogen production, RSC Advances 4, 55, 29286–29290. [CrossRef]
  • Sathre R., Scown C.D., Morrow W.R., Stevens J.C., Sharp I.D., Ager J.W., Walczak K., Houle F.a., Greenblatt J.B. (2014) Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting, Energy & Environmental Science 7, 10, 3264–3278. [CrossRef]
  • Schröder V., Emonts B., Janßen H., Schulze H.P. (2004) Explosion Limits of Hydrogen/Oxygen Mixtures at Initial Pressures up to 200 bar, Chemical Engineering & Technology 27, 8, 847–851. [CrossRef]
  • Seger B., Kamat P. (2009) Fuel cell geared in reverse: photocatalytic hydrogen production using a TiO2/Nafion/Pt membrane assembly with no applied bias, The Journal of Physical Chemistry C 113, 43, 18946–18952. [CrossRef]
  • Spurgeon J.M., Walter M.G., Zhou J., Kohl P. a., Lewis N.S. (2011) Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays, Energy & Environmental Science 4, 5, 1772–1780. [CrossRef]
  • van de Krol R., Grätzel M. (2012) Photoelectrochemical hydrogen production, Springer, New York. [CrossRef]
  • Walczak K., Chen Y., Karp C., Beeman J.W., Shaner M., Spurgeon J., Sharp I.D., Amashukeli X., West W., Jin J., Lewis N.S., Xiang C. (2015) Modeling, Simulation, and Fabrication of a Fully Integrated, Acid-stable, Scalable Solar-Driven Water-Splitting System, ChemSusChem 8, 3, 544–551. [CrossRef] [PubMed]
  • Zhai P., Haussener S., Ager J., Sathre R., Walczak K., Greenblatt J., McKone T. (2013) Net primary energy balance of a solar-driven photoelectrochemical water-splitting device, Energy & Environmental Science 6, 8, 2380. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.