IFP Energies nouvelles International Conference: PHOTO4E – Photocatalysis for energy
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Number 5, September–October 2015
IFP Energies nouvelles International Conference: PHOTO4E – Photocatalysis for energy
Page(s) 863 - 876
DOI https://doi.org/10.2516/ogst/2014061
Published online 14 April 2015
  • Van de Krol R., Grätzel M. (2012) Photoelectrochemical hydrogen production, Springer. [CrossRef]
  • Hooke R., Martín-Duque J., Pedraza J. (2012) Land transformation by humans: a review, GSA Today 4–10. [CrossRef]
  • Bruninx K., Madzharov D., Delarue E., D’haeseleer W. (2013) Impact of the German nuclear phase-out on Europe’s electricity generation—A comprehensive study, Energy Policy 60, 251–261. [CrossRef]
  • Cook T.R., Dogutan D.K., Reece S.Y., Surendranath Y., Teets T.S., Nocera D.G. (2010) Solar energy supply and storage for the legacy and nonlegacy worlds, Chem. Rev. 110, 6474–6502. [CrossRef] [PubMed]
  • Armaroli N., Balzani V. (2011) Towards an electricity-powered world, Energy Environ. Sci. 4, 3193–3222. [CrossRef]
  • Barnhart C.J., Dale M., Brandt A.R., Benson S.M. (2013) The energetic implications of curtailing versus storing solar- and wind-generated electricity, Energy Environ. Sci. 6, 2804–2810. [CrossRef]
  • Fuel Cells (2000) at http://fuelcells.org.
  • Hydrogen Filling Stations Worldwide, at http://www.netinform.net/h2/H2Stations.
  • Hydrogen Fueling Stations, at http://www.afdc.energy.gov/fuels/hydrogen_stations.html.
  • Honda. Home Energy Station, at http://world.honda.com/FuelCell/HomeEnergyStation/.
  • Nanoptek, at http://nanoptek.com/.
  • Waterstofnet, at http://waterstofnet.eu/.
  • High VLO City, at http://highvlocity.eu/.
  • HyFLEET:CUTE, at http://www.global-hydrogen-bus-platform.com/.
  • CHIC project, at http://chic-project.eu/.
  • Van Noorden R. (2012) Artificial Leaf Faces Economic Hurdle, Nat. News. at http://www.nature.com/news/artificial-leaf-faces-economic-hurdle-1.10703.
  • Carbajales-Dale M., Barnhart C.J., Benson S.M. (2014) Can we afford storage? A dynamic net energy analysis of renewable electricity generation supported by energy storage, Energy Environ. Sci. 7, 1538–1544. [CrossRef]
  • Pinaud B.A., Benck J.D., Seitz L.C., Forman A.J., Chen Z., Deutsch T.G., James B.D., Baum K.N., Baum G.N., Ardo S., Wang H., Miller E., Jaramillo T.F. (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry, Energy Environ. Sci. 6, 1983–2002. [CrossRef]
  • Conibeer G., Richards B. (2007) A comparison of PV/electrolyser and photoelectrolytic technologies for use in solar to hydrogen energy storage systems, Int. J. Hydrogen Energy 32, 2703–2711. [CrossRef]
  • Rau S., Vierrath S., Ohlmann J., Fallisch A., Lackner D., Dimroth F., Smolinka T. (2014) Highly Efficient Solar Hydrogen Generation-An Integrated Concept Joining III-V Solar Cells with PEM Electrolysis Cells, Energy Technol. 2, 43–53. [CrossRef] [MathSciNet]
  • Spurgeon J.M., Lewis N.S. (2011) Proton exchange membrane electrolysis sustained by water vapor, Energy Environ. Sci. 4, 2993–2998. [CrossRef]
  • Haussener S., Hu S., Xiang C., Weber A.Z., Lewis N.S. (2013) Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems, Energy Environ. Sci. 6, 3605. [CrossRef]
  • Peharz G., Dimroth F., Wittstadt U. (2007) Solar hydrogen production by water splitting with a conversion efficiency of 18%, Int. J. Hydrogen Energy 32, 3248–3252. [CrossRef]
  • Khaselev O., Bansal A., Turner J.A. (2001) High-efficiency integrated multijunction photovoltaic - electrolysis systems for hydrogen production, Int. J. Hydrogen Energy 26, 127–132. [CrossRef]
  • Jacobsson J., Fjällström V., Sahlberg M. (2013) A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency, Energy Environ. Sci. 6, 3676–3683. [CrossRef]
  • Jacobsson J., Fjällström V., Edoff M., Edvinsson T. (2014) Sustainable Solar Hydrogen Production: From PhotoElectrochemical Cells to PV-Electrolysis and Back Again, Energy Environ. Sci. 7, 2056–2070. [CrossRef]
  • Rongé J., Bosserez T., Martel D., Nervi C., Boarino L., Taulelle F., Decher G., Bordiga S., Martens J.A. (2014) Monolithic cells for solar fuels, Chem. Soc. Rev. 43, 7963–7981. [CrossRef] [PubMed]
  • Walter M.G., Warren E.L., McKone J.R., Boettcher S.W., Mi Q., Santori E.A., Lewis N.S. (2010) Solar water splitting cells, Chem. Rev. 110, 6446–6473. [CrossRef] [PubMed]
  • Berger A., Segalman R., Newman J. (2014) Material Requirements for Membrane Separators in a Water-Splitting Photoelectrochemical Cell, Energy Environ. Sci. 7, 1468–1476. [CrossRef]
  • National Renewable Energy Laboratory. National Center for Photovoltaics, at http://www.nrel.gov/ncpv/.
  • Seitz L.C., Chen Z., Forman A.J., Pinaud B.A., Benck J.D., Jaramillo T.F. (2014) Modeling Practical Performance Limits of Photoelectrochemical Water Splitting Based on the Current State of Materials Research, ChemSusChem 7, 1372–1385. [CrossRef] [PubMed]
  • Rocheleau R.E., Miller E.L. (1997) Engineering production of hydrogen: loss analysis, Int. J. Hydrog. Energy 22, 771–782. [CrossRef]
  • Hu S., Xiang C., Haussener S., Berger A.D., Lewis N.S. (2013) An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems, Energy Environ. Sci. 6, 2984–2993. [CrossRef]
  • Newman J., Hoertz P.G., Bonino C.A., Trainham J.A. (2012) Review: An Economic Perspective on Liquid Solar Fuels, J. Electrochem. Soc. 159, A1722–A1729. [CrossRef]
  • European Commission (2008) Hyways. The European Hydrogen Roadmap.
  • US Department of Energy (2012) Fuel Cell technologies multi-year research, development and demonstration plan, at http://energy.gov/eere/fuelcells/fuel-cell-technologies-office-multi-year-research-development-and-demonstration-plan.
  • Parkinson B., Turner J. (2013) in Photoelectrochem. Water Split, Lewerenz H.-J., Peter L. (eds.), Royal Society of Chemistry, pp.1–18. [CrossRef]
  • Skea J. (2014) The renaissance of energy innovation, Energy Environ. Sci. 7, 21–24. [CrossRef]
  • Turner J.A. (2004) Sustainable hydrogen production, Science 305, 972–974. [CrossRef] [PubMed]
  • McKone J.R., Gray H.B., Lewis N.S. (2013) Will Solar-Driven Water-Splitting Devices See the Light of Day? Chem. Mater. 26, 407–414. [CrossRef]
  • Plass K.E., Filler M.A., Spurgeon J.M., Kayes B.M., Maldonado S., Brunschwig B.S., Atwater H.A., Lewis N.S., (2009) Flexible Polymer-Embedded Si Wire Arrays, Adv. Mater. 21, 325–328. [CrossRef]
  • Mason J., Zweibel K. (2008) Sol. Hydrog. Gener, Rajeshwar K., McConnell R., Licht S. (eds), Springer, pp. 273–313. [CrossRef]
  • Modestino M.A., Walczak K.A., Berger A., Evans C.M., Haussener S., Koval C., Newman J.S., Ager J.W., Segalman R.A. (2014) Robust production of purified H2 in a stable, self-regulating, and continuously operating solar fuel generator, Energy Environ. Sci. 7, 297–301. [CrossRef]
  • Wang T., Luo Z., Li C., Gong J. (2014) Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition, Chem. Soc. Rev. 43, 7469–7484. [CrossRef] [PubMed]
  • Chen Z., Jaramillo T.F., Deutsch T.G., Kleiman-Shwarsctein A., Forman A.J., Gaillard N., Garland R., Takanabe K., Heske C., Sunkara M., McFarland E.W., Domen K., Miller E.L., Turner J.A., Dinh H.N. (2011) Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols, J. Mater. Res. 25, 3–16. [CrossRef]
  • Haussener S., Xiang C., Spurgeon J.M., Ardo S., Lewis N.S., Weber A.Z. (2012) Modeling, Simulation, and Design Criteria for Photoelectrochemical Water-Splitting Systems, Energy Environ. Sci. 5, 9922–9935. [CrossRef]
  • Carver C., Ulissi Z., Ong C.K., Dennison S., Kelsall G.H., Hellgardt K. (2012) Modelling and development of photoelectrochemical reactor for H2 production, Int. J. Hydrogen Energy 37, 2911–2923. [CrossRef]
  • European Commission (2010) Critical Raw Materials for the EU.
  • Du P., Eisenberg R. (2012) Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges, Energy Environ. Sci. 5, 6012–6021. [CrossRef]
  • Zhai P., Haussener S., Ager J., Sathre R., Walczak K., Greenblatt J., McKone T. (2013) Net primary energy balance of a solar-driven photoelectrochemical water-splitting device, Energy Environ. Sci. 6, 2380–2389. [CrossRef]
  • Habas S.E., Platt H.A.S., van Hest M.F.A.M., Ginley D.S. (2010) Low-cost inorganic solar cells: from ink to printed device, Chem. Rev. 110, 6571–6594. [CrossRef] [PubMed]
  • Desertec Industrial Initiative. at http://www.dii-eumena.com.
  • Haeseldonckx D., Dhaeseleer W. (2007) The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure, Int. J. Hydrogen Energy 32, 1381–1386. [CrossRef]
  • Roads2HyCOM. European Hydrogen Infrastructure Atlas. Part III. Industrial distribution infrastructure, at http://www.roads2hy.com/r2h_Downloads.
  • Centi G., Quadrelli E., Perathoner S. (2013) Catalysis for CO2 conversion: A key technology for rapid introduction of renewable energy in the value chain of chemical industries, Energy Environ. Sci. 6, 1711–1731. [CrossRef]
  • European Commission (2013) On the Future of Carbon Capture and Storage in Europe, COM(2013) 180.
  • Hydrogenics, Power-to-gas, http://www.hydrogenics.com/products-solutions/energy-storage-fueling-solutions/power-to-gas.
  • Sunfire, http://www.sunfire.de.
  • ETOGAS, at http://www.etogas.com.
  • Lilliestam J., Ellenbeck S. (2011) Energy security and renewable electricity trade—Will Desertec make Europe vulnerable to the “energy weapon”? Energy Policy 39, 3380–3391. [CrossRef]
  • Alanne K., Saari A. (2006) Distributed energy generation and sustainable development, Renew. Sustain. Energy Rev. 10, 539–558. [CrossRef]
  • Keirstead J. (2007) Behavioural responses to photovoltaic systems in the UK domestic sector, Energy Policy 35, 4128–4141. [CrossRef]
  • Jena P. (2011) Materials for Hydrogen Storage: Past, Present, and Future, J. Phys. Chem. Lett. 2, 206–211. [CrossRef]
  • Edwards P.P., Kuznetsov V.L., David W.I.F. (2007) Hydrogen energy, Phil. Trans. A 365, 1043–1056. [CrossRef]
  • Sathre R., Scown C.D., Morrow W.R., Stevens J.C., Sharp I.D., Ager J.W., Walczak K., Houle F.A., Greenblatt J.B. (2014) Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting, Energy Environ. Sci. 7, 3264–3278. [CrossRef]
  • Rongé J., Deng S., Pulinthanathu Sree S., Bosserez T., Verbruggen S.W., Kumar Singh N., Dendooven J., Roeffaers M.B.J., Taulelle F., De Volder M., Detavernier C., Martens J.A. (2014) Air-Based Photoelectrochemical Cell Capturing Water Molecules from Ambient Air for Hydrogen Production, RSC Adv. 4, 29286–29290. [CrossRef]
  • Döscher H., Geisz J.F.J., Deutsch T.G., Turner J.A. (2014) Sunlight absorption in water–efficiency and design implications for photoelectrochemical devices, Energy Environ. Sci. 7, 2951. [CrossRef]
  • Xiang C., Chen Y., Lewis N.S. (2013) Modeling an integrated photoelectrolysis system sustained by water vapor, Energy Environ. Sci. 6, 3713–3721. [CrossRef]
  • Dionigi F., Vesborg P.C.K., Pedersen T., Hansen O., Dahl S., Xiong A., Maeda K., Domen K., Chorkendorff I. (2011) Gas phase photocatalytic water splitting with Rh2−yCryO3/GaN:ZnO in μ-reactors, Energy Environ. Sci. 4, 2937–2942. [CrossRef]
  • Bose S., Kuila T., Nguyen T.X.H., Kim N.H., Lau K.-T., Lee J.H. (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges, Prog. Polym. Sci. 36, 813–843. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.