IFP Energies nouvelles International Conference: PHOTO4E – Photocatalysis for energy
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Number 5, September–October 2015
IFP Energies nouvelles International Conference: PHOTO4E – Photocatalysis for energy
Page(s) 891 - 902
DOI https://doi.org/10.2516/ogst/2014062
Published online 27 March 2015
  • Turner J.A. (2004) Sustainable Hydrogen Production, Science 305, 5686, 972–974. [CrossRef] [PubMed] [Google Scholar]
  • Fu X., Long J., Wang X., Leung D.Y.C., Ding Z., Wu L., Zhang Z., Li Z., Fu X. (2008) Photocatalytic reforming of biomass: A systematic study of hydrogen evolution from glucose solution, International Journal of Hydrogen Energy 33, 22, 6484–6491. [CrossRef] [Google Scholar]
  • Kondarides D.I., Patsoura A., Verykios X.E. (2010) Anaerobic Photocatalytic Oxidation of Carbohydrates in Aqueous Pt/TiO2 Suspensions with Simultaneous Production of Hydrogen, J. Adv. Oxid. Technol. 13, 1, 116–123. [Google Scholar]
  • Azadi P., Otomo J., Hatano H., Oshima Y., Farnood R. (2010) Hydrogen production by catalytic near-critical water gasification and steam reforming of glucose, International Journal of Hydrogen Energy 35, 8, 3406–3414. [CrossRef] [Google Scholar]
  • Bičáková O., Straka P. (2012) Production of hydrogen from renewable resources and its effectiveness, International Journal of Hydrogen Energy 37, 16, 11563–11578. [CrossRef] [Google Scholar]
  • Moreno T., Kouzaki G., Sasaki M., Goto M., Cocero M.J. (2012) Uncatalysed wet oxidation of d-glucose with hydrogen peroxide and its combination with hydrothermal electrolysis, Carbohydrate Research 349, 33–38. [CrossRef] [PubMed] [Google Scholar]
  • Prüße U., Herrmann M., Baatz C., Decker N. (2011) Gold-catalyzed selective glucose oxidation at high glucose concentrations and oxygen partial pressures, Applied Catalysis A: General 406, 1-2, 89–93. [CrossRef] [Google Scholar]
  • Foster A.J., Jae J., Cheng Y.-T., Huber G.W., Lobo R.F. (2012) Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5, Applied Catalysis A: General 423–424, 154–161. [CrossRef] [Google Scholar]
  • Hallenbeck P.C., Abo-Hashesh M., Ghosh D. (2012) Strategies for improving biological hydrogen production, Bioresource Technology 110, 1–9. [CrossRef] [PubMed] [Google Scholar]
  • Ntaikou I., Gavala H.N., Kornaros M., Lyberatos G. (2008) Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus, International Journal of Hydrogen Energy 33, 4, 1153–1163. [CrossRef] [Google Scholar]
  • Lee H.S., Salerno M.B., Rittmann B.E. (2008) Thermodynamic evaluation on H2 production in glucose fermentation, Environmental Science & Technology 42, 7, 2401–2407. [CrossRef] [PubMed] [Google Scholar]
  • McGinley J., McHale F.N., Hughes P., Reid C.N., McHale A.P. (2004) Production of electrical energy from carbohydrates using a transition metal-catalysed liquid alkaline fuel cell, Biotechnology Letters 26, 23, 1771–1776. [CrossRef] [PubMed] [Google Scholar]
  • Kawai T., Sakata T. (1980) Conversion of carbohydrate into hydrogen fuel by a photocatalytic process, Nature 286, 5772, 474–476. [CrossRef] [Google Scholar]
  • Bahruji H., Bowker M., Davies P.R., Al-Mazroai L.S., Dickinson A., Greaves J., James D., Millard L., Pedrono F. (2010) Sustainable H2 gas production by photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry 216, 2-3, 115–118. [CrossRef] [Google Scholar]
  • Song C. (2002) Fuel processing for low-temperature and high-temperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century, Catal. Today 77, 1-2, 17–49. [CrossRef] [Google Scholar]
  • Hamelinck C.N., Faaij A.P.C. (2002) Future prospects for production of methanol and hydrogen from biomass, Journal of Power Sources 111, 1, 1–22. [CrossRef] [Google Scholar]
  • Bridgwater A.V. (1994) Catalysis in thermal biomass conversion, Applied Catalysis A: General 116, 1-2, 5–47. [CrossRef] [Google Scholar]
  • Huber G.W., Shabaker J.W., Dumesic J.A. (2003) Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons, Science 300, 5628, 2075–2077. [CrossRef] [PubMed] [Google Scholar]
  • Vaiano V., Sacco O., Sannino D., Ciambelli P., Longo S., Venditto V., Guerra G. (2014) N-doped TiO2/s-PS aerogels for photocatalytic degradation of organic dyes in wastewater under visible light irradiation, J. Chem. Technol. Biotechnol. 89, 8, 1175–1181. [CrossRef] [Google Scholar]
  • Vaiano V., Sacco O., Stoller M., Chianese A., Ciambelli P., Sannino D. (2014) Influence of the photoreactor configuration and of different light sources in the photocatalytic treatment of highly polluted wastewater, Int. J. Chem. React. Eng. 12, 1, 1–13. [Google Scholar]
  • Mohamed R.M., Aazam E.S. (2012) H2 Production with Low CO Selectivity from Photocatalytic Reforming of Glucose on Ni/TiO2-SiO2, Chinese Journal of Catalysis 33, 2-3, 247–253. [CrossRef] [Google Scholar]
  • Gomathisankar P., Yamamoto D., Katsumata H., Suzuki T., Kaneco S. (2013) Photocatalytic hydrogen production with aid of simultaneous metal deposition using titanium dioxide from aqueous glucose solution, International Journal of Hydrogen Energy 38, 14, 5517–5524. [CrossRef] [Google Scholar]
  • Zhang L., Shi J., Liu M., Jing D., Guo L. (2014) Photocatalytic reforming of glucose under visible light over morphology controlled Cu2O: Efficient charge separation by crystal facet engineering, Chemical Communications 50, 2, 192–194. [CrossRef] [Google Scholar]
  • Carraro G., Maccato C., Gasparotto A., Montini T., Turner S., Lebedev O.I., Gombac V., Adami G., Van Tendeloo G., Barreca D., Fornasiero P. (2014) Enhanced Hydrogen Production by Photoreforming of Renewable Oxygenates Through Nanostructured Fe2O3 Polymorphs, Advanced Functional Materials 24, 3, 372–378. [CrossRef] [Google Scholar]
  • Kondarides D., Daskalaki V., Patsoura A., Verykios X. (2008) Hydrogen Production by Photo-Induced Reforming of Biomass Components and Derivatives at Ambient Conditions, Catal Lett. 122, 1-2, 26–32. [CrossRef] [Google Scholar]
  • Linsebigler A.L., Lu G., Yates J.T. (1995) Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chemical Reviews 95, 3, 735–758. [CrossRef] [Google Scholar]
  • Chong R., Li J., Ma Y., Zhang B., Han H., Li C. (2014) Selective conversion of aqueous glucose to value-added sugar aldose on TiO2-based photocatalysts, Journal of Catalysis 314, 101–108. [CrossRef] [Google Scholar]
  • Wu G., Chen T., Zhou G., Zong X., Li C. (2008) H2 production with low CO selectivity from photocatalytic reforming of glucose on metal/TiO2 catalysts, Sci. China Ser. B-Chem. 51, 2, 97–100. [CrossRef] [Google Scholar]
  • Colmenares J.C., Magdziarz A., Aramendia M.A., Marinas A., Marinas J.M., Urbano F.J., Navio J.A. (2011) Influence of the strong metal support interaction effect (SMSI) of Pt/TiO2 and Pd/TiO2 systems in the photocatalytic biohydrogen production from glucose solution, Catalysis Communications 16, 1, 1–6. [CrossRef] [Google Scholar]
  • Passio L., Rizzoa L., Fuchs S. (2012) Two-phase anaerobic digestion of partially acidified sewage sludge: a pilot plant study for safe sludge disposal in developing countries, Environmental technology 33, 16-18, 2089–2095. [CrossRef] [PubMed] [Google Scholar]
  • Li Y., Park S.Y., Zhu J. (2011) Solid-state anaerobic digestion for methane production from organic waste, Renewable and Sustainable Energy Reviews 15, 1, 821–826. [CrossRef] [Google Scholar]
  • Sakata T., Kawai T. (1981) Heterogeneous photocatalytic production of hydrogen and methane from ethanol and water, Chemical Physics Letters 80, 2, 341–344. [CrossRef] [Google Scholar]
  • Colón G., Hidalgo M.C., Navío J.A. (2003) Photocatalytic behaviour of sulphated TiO2 for phenol degradation, Applied Catalysis B 45, 1, 39–50. [CrossRef] [Google Scholar]
  • Maicu M., Hidalgo M.C., Colón G., Navío J.A. (2011) Comparative study of the photodeposition of Pt, Au and Pd on pre-sulphated TiO2 for the photocatalytic decomposition of phenol, Journal of Photochemistry and Photobiology A: Chemistry 217, 2-3, 275–283. [CrossRef] [Google Scholar]
  • Hidalgo M.C., Murcia J.J., Navío J.A., Colón G. (2011) Photodeposition of gold on titanium dioxide for photocatalytic phenol oxidation, Applied Catalysis A: General 397, 1-2, 112–120. [CrossRef] [Google Scholar]
  • Murcia J.J., Hidalgo M.C., Navío J.A., Araña J., Doña-Rodríguez J.M. (2014) Correlation study between photo-degradation and surface adsorption properties of phenol and methyl orange on TiO2 Vs platinum-supported TiO2, Applied Catalysis B 150-151, 107–115. [CrossRef] [Google Scholar]
  • DuBois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F. (1956) Colorimetric Method for Determination of Sugars and Related Substances, Analytical Chemistry 28, 3, 350–356. [CrossRef] [Google Scholar]
  • Albalasmeh A.A., Berhe A.A., Ghezzehei T.A. (2013) A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry, Carbohydrate Polymers 97, 2, 253–261. [CrossRef] [PubMed] [Google Scholar]
  • Navaladian S., Viswanathan B., Varadarajan T.K., Viswanath R.P. (2008) A Rapid Synthesis of Oriented Palladium Nanoparticles by UV Irradiation, Nanoscale Research Letters 4, 2, 181–186. [CrossRef] [PubMed] [Google Scholar]
  • Brun M., Berthet A., Bertolini J.C. (1999) XPS, AES and Auger parameter of Pd and PdO, Journal of Electron Spectroscopy and Related Phenomena 104, 1-3, 55–60. [CrossRef] [Google Scholar]
  • Siemon U., Bahnemann D., Testa J.J., Rodríguez D. Litter M.I. Bruno N. (2002) Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2, Journal of Photochemistry and Photobiology A: Chemistry 148, 1-3, 247–255. [CrossRef] [Google Scholar]
  • Bamwenda G.R., Tsubota S., Nakamura T., Haruta M. (1995) Photoassisted hydrogen production from a water ethanol solution a comparison of activities of Au-TiO2 and Pt-TiO2, Journal of Photochemistry and Photobiology A: Chemistry 89, 2, 177–189. [CrossRef] [Google Scholar]
  • Liu Y., Guo L., Yan W., Liu H. (2006) A composite visible-light photocatalyst for hydrogen production, Journal of Power Sources 159, 2, 1300–1304. [CrossRef] [Google Scholar]
  • Kenney J.F., Kutcherov V.A., Bendeliani N.A., Alekseev V.A. (2002) The evolution of multicomponent systems at high pressures: VI. The thermodynamic stability of the hydrogen–carbon system: The genesis of hydrocarbons and the origin of petroleum, Proceedings of the National Academy of Sciences 99, 17, 10976–10981. [CrossRef] [Google Scholar]
  • Ramachandran S., Fontanille P., Pandey A., Larroche C. (2006) Gluconic acid: Properties, applications and microbial production, Food Technology and Biotechnology 44, 2, 185–195. [Google Scholar]
  • Sannino D., Vaiano V., Sacco O., Ciambelli P. (2013) Mathematical modelling of photocatalytic degradation of methylene blue under visible light irradiation, Journal of Environmental Chemical Engineering 1, 1-2, 56–60. [CrossRef] [Google Scholar]
  • Jing D., Liu M., Shi J., Tang W., Guo L. (2010) Hydrogen production under visible light by photocatalytic reforming of glucose over an oxide solid solution photocatalyst, Catalysis Communications 12, 4, 264–267. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.