- Van de Krol R., Grätzel M. (2012) Photoelectrochemical hydrogen production, Springer. [Google Scholar]
- Hooke R., Martín-Duque J., Pedraza J. (2012) Land transformation by humans: a review, GSA Today 4–10. [CrossRef] [Google Scholar]
- Bruninx K., Madzharov D., Delarue E., D’haeseleer W. (2013) Impact of the German nuclear phase-out on Europe’s electricity generation—A comprehensive study, Energy Policy 60, 251–261. [CrossRef] [Google Scholar]
- Cook T.R., Dogutan D.K., Reece S.Y., Surendranath Y., Teets T.S., Nocera D.G. (2010) Solar energy supply and storage for the legacy and nonlegacy worlds, Chem. Rev. 110, 6474–6502. [CrossRef] [PubMed] [Google Scholar]
- Armaroli N., Balzani V. (2011) Towards an electricity-powered world, Energy Environ. Sci. 4, 3193–3222. [CrossRef] [Google Scholar]
- Barnhart C.J., Dale M., Brandt A.R., Benson S.M. (2013) The energetic implications of curtailing versus storing solar- and wind-generated electricity, Energy Environ. Sci. 6, 2804–2810. [CrossRef] [Google Scholar]
- Fuel Cells (2000) at http://fuelcells.org. [Google Scholar]
- Hydrogen Filling Stations Worldwide, at http://www.netinform.net/h2/H2Stations. [Google Scholar]
- Hydrogen Fueling Stations, at http://www.afdc.energy.gov/fuels/hydrogen_stations.html. [Google Scholar]
- Honda. Home Energy Station, at http://world.honda.com/FuelCell/HomeEnergyStation/. [Google Scholar]
- Nanoptek, at http://nanoptek.com/. [Google Scholar]
- Waterstofnet, at http://waterstofnet.eu/. [Google Scholar]
- High VLO City, at http://highvlocity.eu/. [Google Scholar]
- HyFLEET:CUTE, at http://www.global-hydrogen-bus-platform.com/. [Google Scholar]
- CHIC project, at http://chic-project.eu/. [Google Scholar]
- Van Noorden R. (2012) Artificial Leaf Faces Economic Hurdle, Nat. News. at http://www.nature.com/news/artificial-leaf-faces-economic-hurdle-1.10703. [Google Scholar]
- Carbajales-Dale M., Barnhart C.J., Benson S.M. (2014) Can we afford storage? A dynamic net energy analysis of renewable electricity generation supported by energy storage, Energy Environ. Sci. 7, 1538–1544. [CrossRef] [Google Scholar]
- Pinaud B.A., Benck J.D., Seitz L.C., Forman A.J., Chen Z., Deutsch T.G., James B.D., Baum K.N., Baum G.N., Ardo S., Wang H., Miller E., Jaramillo T.F. (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry, Energy Environ. Sci. 6, 1983–2002. [CrossRef] [Google Scholar]
- Conibeer G., Richards B. (2007) A comparison of PV/electrolyser and photoelectrolytic technologies for use in solar to hydrogen energy storage systems, Int. J. Hydrogen Energy 32, 2703–2711. [CrossRef] [Google Scholar]
- Rau S., Vierrath S., Ohlmann J., Fallisch A., Lackner D., Dimroth F., Smolinka T. (2014) Highly Efficient Solar Hydrogen Generation-An Integrated Concept Joining III-V Solar Cells with PEM Electrolysis Cells, Energy Technol. 2, 43–53. [CrossRef] [MathSciNet] [Google Scholar]
- Spurgeon J.M., Lewis N.S. (2011) Proton exchange membrane electrolysis sustained by water vapor, Energy Environ. Sci. 4, 2993–2998. [CrossRef] [Google Scholar]
- Haussener S., Hu S., Xiang C., Weber A.Z., Lewis N.S. (2013) Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems, Energy Environ. Sci. 6, 3605. [CrossRef] [Google Scholar]
- Peharz G., Dimroth F., Wittstadt U. (2007) Solar hydrogen production by water splitting with a conversion efficiency of 18%, Int. J. Hydrogen Energy 32, 3248–3252. [CrossRef] [Google Scholar]
- Khaselev O., Bansal A., Turner J.A. (2001) High-efficiency integrated multijunction photovoltaic - electrolysis systems for hydrogen production, Int. J. Hydrogen Energy 26, 127–132. [CrossRef] [Google Scholar]
- Jacobsson J., Fjällström V., Sahlberg M. (2013) A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency, Energy Environ. Sci. 6, 3676–3683. [CrossRef] [Google Scholar]
- Jacobsson J., Fjällström V., Edoff M., Edvinsson T. (2014) Sustainable Solar Hydrogen Production: From PhotoElectrochemical Cells to PV-Electrolysis and Back Again, Energy Environ. Sci. 7, 2056–2070. [CrossRef] [Google Scholar]
- Rongé J., Bosserez T., Martel D., Nervi C., Boarino L., Taulelle F., Decher G., Bordiga S., Martens J.A. (2014) Monolithic cells for solar fuels, Chem. Soc. Rev. 43, 7963–7981. [CrossRef] [PubMed] [Google Scholar]
- Walter M.G., Warren E.L., McKone J.R., Boettcher S.W., Mi Q., Santori E.A., Lewis N.S. (2010) Solar water splitting cells, Chem. Rev. 110, 6446–6473. [CrossRef] [PubMed] [Google Scholar]
- Berger A., Segalman R., Newman J. (2014) Material Requirements for Membrane Separators in a Water-Splitting Photoelectrochemical Cell, Energy Environ. Sci. 7, 1468–1476. [CrossRef] [Google Scholar]
- National Renewable Energy Laboratory. National Center for Photovoltaics, at http://www.nrel.gov/ncpv/. [Google Scholar]
- Seitz L.C., Chen Z., Forman A.J., Pinaud B.A., Benck J.D., Jaramillo T.F. (2014) Modeling Practical Performance Limits of Photoelectrochemical Water Splitting Based on the Current State of Materials Research, ChemSusChem 7, 1372–1385. [CrossRef] [PubMed] [Google Scholar]
- Rocheleau R.E., Miller E.L. (1997) Engineering production of hydrogen: loss analysis, Int. J. Hydrog. Energy 22, 771–782. [CrossRef] [Google Scholar]
- Hu S., Xiang C., Haussener S., Berger A.D., Lewis N.S. (2013) An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems, Energy Environ. Sci. 6, 2984–2993. [CrossRef] [Google Scholar]
- Newman J., Hoertz P.G., Bonino C.A., Trainham J.A. (2012) Review: An Economic Perspective on Liquid Solar Fuels, J. Electrochem. Soc. 159, A1722–A1729. [CrossRef] [Google Scholar]
- European Commission (2008) Hyways. The European Hydrogen Roadmap. [Google Scholar]
- US Department of Energy (2012) Fuel Cell technologies multi-year research, development and demonstration plan, at http://energy.gov/eere/fuelcells/fuel-cell-technologies-office-multi-year-research-development-and-demonstration-plan. [Google Scholar]
- Parkinson B., Turner J. (2013) in Photoelectrochem. Water Split, Lewerenz H.-J., Peter L. (eds.), Royal Society of Chemistry, pp.1–18. [CrossRef] [Google Scholar]
- Skea J. (2014) The renaissance of energy innovation, Energy Environ. Sci. 7, 21–24. [CrossRef] [Google Scholar]
- Turner J.A. (2004) Sustainable hydrogen production, Science 305, 972–974. [CrossRef] [PubMed] [Google Scholar]
- McKone J.R., Gray H.B., Lewis N.S. (2013) Will Solar-Driven Water-Splitting Devices See the Light of Day? Chem. Mater. 26, 407–414. [CrossRef] [Google Scholar]
- Plass K.E., Filler M.A., Spurgeon J.M., Kayes B.M., Maldonado S., Brunschwig B.S., Atwater H.A., Lewis N.S., (2009) Flexible Polymer-Embedded Si Wire Arrays, Adv. Mater. 21, 325–328. [CrossRef] [Google Scholar]
- Mason J., Zweibel K. (2008) Sol. Hydrog. Gener, Rajeshwar K., McConnell R., Licht S. (eds), Springer, pp. 273–313. [CrossRef] [Google Scholar]
- Modestino M.A., Walczak K.A., Berger A., Evans C.M., Haussener S., Koval C., Newman J.S., Ager J.W., Segalman R.A. (2014) Robust production of purified H2 in a stable, self-regulating, and continuously operating solar fuel generator, Energy Environ. Sci. 7, 297–301. [CrossRef] [Google Scholar]
- Wang T., Luo Z., Li C., Gong J. (2014) Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition, Chem. Soc. Rev. 43, 7469–7484. [CrossRef] [PubMed] [Google Scholar]
- Chen Z., Jaramillo T.F., Deutsch T.G., Kleiman-Shwarsctein A., Forman A.J., Gaillard N., Garland R., Takanabe K., Heske C., Sunkara M., McFarland E.W., Domen K., Miller E.L., Turner J.A., Dinh H.N. (2011) Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols, J. Mater. Res. 25, 3–16. [CrossRef] [Google Scholar]
- Haussener S., Xiang C., Spurgeon J.M., Ardo S., Lewis N.S., Weber A.Z. (2012) Modeling, Simulation, and Design Criteria for Photoelectrochemical Water-Splitting Systems, Energy Environ. Sci. 5, 9922–9935. [CrossRef] [Google Scholar]
- Carver C., Ulissi Z., Ong C.K., Dennison S., Kelsall G.H., Hellgardt K. (2012) Modelling and development of photoelectrochemical reactor for H2 production, Int. J. Hydrogen Energy 37, 2911–2923. [CrossRef] [Google Scholar]
- European Commission (2010) Critical Raw Materials for the EU. [Google Scholar]
- Du P., Eisenberg R. (2012) Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges, Energy Environ. Sci. 5, 6012–6021. [CrossRef] [Google Scholar]
- Zhai P., Haussener S., Ager J., Sathre R., Walczak K., Greenblatt J., McKone T. (2013) Net primary energy balance of a solar-driven photoelectrochemical water-splitting device, Energy Environ. Sci. 6, 2380–2389. [CrossRef] [Google Scholar]
- Habas S.E., Platt H.A.S., van Hest M.F.A.M., Ginley D.S. (2010) Low-cost inorganic solar cells: from ink to printed device, Chem. Rev. 110, 6571–6594. [CrossRef] [PubMed] [Google Scholar]
- Desertec Industrial Initiative. at http://www.dii-eumena.com. [Google Scholar]
- Haeseldonckx D., Dhaeseleer W. (2007) The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure, Int. J. Hydrogen Energy 32, 1381–1386. [CrossRef] [Google Scholar]
- Roads2HyCOM. European Hydrogen Infrastructure Atlas. Part III. Industrial distribution infrastructure, at http://www.roads2hy.com/r2h_Downloads. [Google Scholar]
- Centi G., Quadrelli E., Perathoner S. (2013) Catalysis for CO2 conversion: A key technology for rapid introduction of renewable energy in the value chain of chemical industries, Energy Environ. Sci. 6, 1711–1731. [CrossRef] [Google Scholar]
- European Commission (2013) On the Future of Carbon Capture and Storage in Europe, COM(2013) 180. [Google Scholar]
- Hydrogenics, Power-to-gas, http://www.hydrogenics.com/products-solutions/energy-storage-fueling-solutions/power-to-gas. [Google Scholar]
- Sunfire, http://www.sunfire.de. [Google Scholar]
- ETOGAS, at http://www.etogas.com. [Google Scholar]
- Lilliestam J., Ellenbeck S. (2011) Energy security and renewable electricity trade—Will Desertec make Europe vulnerable to the “energy weapon”? Energy Policy 39, 3380–3391. [CrossRef] [Google Scholar]
- Alanne K., Saari A. (2006) Distributed energy generation and sustainable development, Renew. Sustain. Energy Rev. 10, 539–558. [CrossRef] [Google Scholar]
- Keirstead J. (2007) Behavioural responses to photovoltaic systems in the UK domestic sector, Energy Policy 35, 4128–4141. [CrossRef] [Google Scholar]
- Jena P. (2011) Materials for Hydrogen Storage: Past, Present, and Future, J. Phys. Chem. Lett. 2, 206–211. [CrossRef] [Google Scholar]
- Edwards P.P., Kuznetsov V.L., David W.I.F. (2007) Hydrogen energy, Phil. Trans. A 365, 1043–1056. [CrossRef] [Google Scholar]
- Sathre R., Scown C.D., Morrow W.R., Stevens J.C., Sharp I.D., Ager J.W., Walczak K., Houle F.A., Greenblatt J.B. (2014) Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting, Energy Environ. Sci. 7, 3264–3278. [CrossRef] [Google Scholar]
- Rongé J., Deng S., Pulinthanathu Sree S., Bosserez T., Verbruggen S.W., Kumar Singh N., Dendooven J., Roeffaers M.B.J., Taulelle F., De Volder M., Detavernier C., Martens J.A. (2014) Air-Based Photoelectrochemical Cell Capturing Water Molecules from Ambient Air for Hydrogen Production, RSC Adv. 4, 29286–29290. [CrossRef] [Google Scholar]
- Döscher H., Geisz J.F.J., Deutsch T.G., Turner J.A. (2014) Sunlight absorption in water–efficiency and design implications for photoelectrochemical devices, Energy Environ. Sci. 7, 2951. [CrossRef] [Google Scholar]
- Xiang C., Chen Y., Lewis N.S. (2013) Modeling an integrated photoelectrolysis system sustained by water vapor, Energy Environ. Sci. 6, 3713–3721. [CrossRef] [Google Scholar]
- Dionigi F., Vesborg P.C.K., Pedersen T., Hansen O., Dahl S., Xiong A., Maeda K., Domen K., Chorkendorff I. (2011) Gas phase photocatalytic water splitting with Rh2−yCryO3/GaN:ZnO in μ-reactors, Energy Environ. Sci. 4, 2937–2942. [CrossRef] [Google Scholar]
- Bose S., Kuila T., Nguyen T.X.H., Kim N.H., Lau K.-T., Lee J.H. (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges, Prog. Polym. Sci. 36, 813–843. [CrossRef] [Google Scholar]
Numéro |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Numéro 5, September–October 2015
IFP Energies nouvelles International Conference: PHOTO4E – Photocatalysis for energy
|
|
---|---|---|
Page(s) | 863 - 876 | |
DOI | https://doi.org/10.2516/ogst/2014061 | |
Publié en ligne | 14 avril 2015 |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.