IFP Energies nouvelles International Conference: NEXTLAB 2014 – Advances in Innovative Experimental Methodology or Simulation Tools used to Create, Test, Control and Analyse Systems, Materials and Molecules
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Number 3, May–June 2015
IFP Energies nouvelles International Conference: NEXTLAB 2014 – Advances in Innovative Experimental Methodology or Simulation Tools used to Create, Test, Control and Analyse Systems, Materials and Molecules
Page(s) 463 - 473
DOI https://doi.org/10.2516/ogst/2014051
Published online 10 February 2015
  • Abgrall P., Gué A.M. (2007) Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem — a review, J. Micromech. Microeng. 17, R15–R49. [CrossRef] [Google Scholar]
  • Anxionnaz Z., Cabassud M., Gourdon C., Tochon P. (2010) Transposition of an Exothermic Reaction From a Batch Reactor to an Intensified Continuous One, Heat Transfer Engineering 31, 9, 788–797. [CrossRef] [Google Scholar]
  • Benaïssa W., Gabas N., Cabassud M., Carson D., Elgue S., Demissy S. (2008a) Evaluation of an intensified continuous heat-exchanger reactor for inherently safer characteristics, Journal of Loss Prevention in the Process Industries 21, 5, 528–536. [CrossRef] [Google Scholar]
  • Benaïssa W., Elgue S., Gabas N., Cabassud M., Carson D., Demissy M. (2008b) Dynamic behaviour of a continuous heat-exchanger/reactor after flow failure, International Journal of Chemical Reactor Engineering 6, A23, 1–19. [Google Scholar]
  • Boodhoo K., Harvey A. (2013) Process Intensification of Green Chemistry: Engineering Solutions for Sustainable Chemical Processing, ISBN: 978-0-470-97267-0. [Google Scholar]
  • Cabassud M., Gourdon C. (2010) Intensification of heat transfer in chemical reactors: heat exchanger reactors, in Novel concepts in catalysis and chemical reactors, by Cybulski A., Moulijn J.A., Stankiewicz A. (eds), Ed. Wiley. [Google Scholar]
  • Charpentier J.C. (2007) In the frame of globalization and sustainability, process intensification, a path to the future of chemical and process engineering (molecules into money), Chemical Engineering Journal 134, 84–92. [CrossRef] [Google Scholar]
  • Commenge J.M., Falk L. (2014) Methodological framework for choice of intensified equipment and development of innovative technologies, Chemical Engineering and Processing: Process Intensification 84, 109–127. [CrossRef] [Google Scholar]
  • Cross W.T., Ramshaw C. (1986) Process Intensification – Laminar flow – heat transfer, Chemical Engineering Research and Design 64, 4, 293–301. [Google Scholar]
  • Cybulski A, Moulijn J.A., Stankiewicz A. (2011) Novel Concepts in Catalysis and Chemical Reactors: Improving the Efficiency for the Future, John Wiley & Sons. [Google Scholar]
  • Despènes L., Elgue S., Gourdon C., Cabassud M. (2012) Impact of the material on the thermal behaviour of heat exchanger-reactors, Chemical Engineering and Processing : Process Intensification 52, 102–111. [CrossRef] [Google Scholar]
  • Dorobantu Bodoc M., Prat L., Xuereb C., Gourdon C., Lasuye T. (2012) Online Monitoring of Vinyl Chloride Polymerization in a Microreactor Using Raman Spectroscopy, Chemical Engineering & Technology 35, 4, 705–712. [CrossRef] [Google Scholar]
  • Elgue S., Chopard F., Cabassud M., Cognet P., Prat L., Gourdon C. (2007) Optimisation of a chemical reaction in an open plate-type reactor, Patent EP1836627-A2. [Google Scholar]
  • Elgue S., Conté A., Gourdon C., Bastard Y. (2012) Direct fluorination of 1,3-dicarbonyl compound in a continous flow reactor at industrial scale, Chemica Oggi/Chemistry Today 30, 4. [Google Scholar]
  • Elgue S., Conte A., Marty A., Condoret J.S. (2014) Continuous lipase esterification using process intensification technologies, J. Chem. Technol. Biotechnol. 89, 10, 1590–1598. [CrossRef] [Google Scholar]
  • European Process Intensification Roadmap (2007) Available in www.efce.info/efce_media/European_Roadmap_PI-p-531.pdf. [Google Scholar]
  • EUROPIC, European Process Intensification Centre, available in www.europic-centre.eu. [Google Scholar]
  • Hany C., Lebrun H., Pradere C., Toutain J., Batsale J.C. (2010) Thermal analysis of chemical reaction with a continuous microfluidic calorimeter, Chemical Engineering Journal 160, 3, 814–822. [CrossRef] [Google Scholar]
  • Hellier P., Autret J.M., Despènes L., Elgue S., Gourdon C. (2010) Procédé de racémisation et d’acétylation de la leucine, Pierre Fabre Médicament, Patent FR1057629. [Google Scholar]
  • Lo S.N., Cholette A. (1972) Experimental study on the optimum performance of an adiabatic MT reactor, Canadian Journal of Chemical Engineering 50, 1, 71–80. [CrossRef] [Google Scholar]
  • Lörber N., Sarrazin F., Guillot P., Panizza P., Colin A., Pavageau B., Hany C., Maestro P., Marre S., Delclos T., Aymonier C., Subra P., Prat L., Gourdon C., Mignard E. (2011) Some recent advances in the design and the use of miniaturized droplet-based continuous process: Applications in chemistry and high-pressure microflows, Lab on Chip 11, 779–787. [CrossRef] [Google Scholar]
  • Marcati A., Serra C., Bouquey M., Prat L. (2010) Handling of Polymer Particles in Microchannels, Chemical Engineering Technology 33, 11, 1779–1787. [CrossRef] [Google Scholar]
  • Martin S., Porcar R., Peris E., Burguete M.I., Garcia-Verdugo E., Luis S.V. (2014) Supported ionic liquid-​like phases as organocatalysts for the solvent-​free cyanosilylation of carbonyl compounds: from batch to continuous flow process, Green Chemistry 16, 3, 1639–1647. [CrossRef] [Google Scholar]
  • MEPI, Maison Européenne des Procédés Innovants, available in www.mepi.fr. [Google Scholar]
  • Mignard E., Lörber N., Sarrazin F., Colin A., Pavageau B., Maestro P. (2011) Microfluidics: a new tool for research in chemistry, Actualité Chimique, Issue 353–54, 25–28. [Google Scholar]
  • Naumann E.B. (2002) Chemical reactor design, Optimization, and Scale-up, Mc Graw-Hill. [Google Scholar]
  • Pradère C., Joanicot M., Batsale J.C., Toutain J., Gourdon C. (2006) Processing of temperature fields in chemical microreactors with infrared thermography, QUIRT Journal 3, 1/2006, 117–135. [CrossRef] [Google Scholar]
  • Pradère C., Hany C., Toutain J., Batsale J.C. (2010) Thermal analysis for velocity, kinetics, and enthalpy reaction measurements in microfluidic devices, Experimental Heat Transfer 23, 1, 44–62. [CrossRef] [Google Scholar]
  • Prat L., Devatine A., Cognet P., Cabassud M., Gourdon C., Elgue S., Chopard F. (2005) Performance evaluation of a novel concept “Open Plate Reactor” applied to a highly exothermic reactions, Chemical Engineering Technology 28, 9, 1028–1034. [CrossRef] [Google Scholar]
  • Processium, available in www.processium.com. [Google Scholar]
  • Prosim®, available in www.prosim.net/fr/index.php. [Google Scholar]
  • Prudhomme E., Osuna Sanchez H., Rousseaux P., Philippe R., De Bellefon C., Cabassud M., Gourdon C., Moreau M., Falk L., Lomel S., Baussaron L., Grollemund J., Durand N. (2013) PROCIP : une plateforme d’intensification de procédés, Récents Progrès en Génie des Procédés, n° 104, ISSN: 1775–335X ; ISBN: 978-2-910239-78-7, Ed. SFGP, Paris, France. [Google Scholar]
  • Raimondi N., Prat L., Gourdon C., Cognet P. (2008) Direct numerical simulations of mass transfer in square microchannels for liquid–liquid slug flow, Chemical Engineering Science 63, 5522–5530. [CrossRef] [Google Scholar]
  • Raimondi N., Prat L. (2011) Numerical study of the coupling between reaction and mass transfer for liquid-liquid slug flow in square microchannels, AIChE Journal 57, 7, 1719–1732. [CrossRef] [Google Scholar]
  • Raimondi N., Prat L., Gourdon C. (2014) Experiments of mass transfer with liquid-liquid slug flow in square microchannels, Chemical Engineering Science 105, 169–178. [CrossRef] [Google Scholar]
  • Ramshaw C., Arkley K. (1983) Process Intensification by miniature mass transfer, Process Engineering 64, 1, 29. [Google Scholar]
  • Ravey C., Pradère C., Régnier N., Batsale J.C. (2012) New temperature field processing from IR camera for velocity, thermal diffusivity and calorimetric non-intrusive measurements in microfluidics systems, QIRT Journal 9, 1, 79–98. [CrossRef] [Google Scholar]
  • Reay D., Ramshaw C., Harvey A. (2013). Process Intensification: Engineering for Efficiency, Sustainability and Flexibility, 2nd ed., Trevor Laird (ed.), Butterworth-Heinemann/IChemE, Woburn, ISBN 978-0-08-098304-2. [Google Scholar]
  • Richard R., Dubreuil B., Thiebaud-Roux S., Prat L. (2013a) On-line monitoring of the transesterification reaction carried out in microreactors using near infrared spectroscopy, Fuel 104, 318–325. [CrossRef] [Google Scholar]
  • Richard R., Thiebaud-Roux S., Prat L. (2013b) Modelling the kinetics of transesterification reaction of sunflower oil with ethanol in microreactors, Chemical Engineering Science 87, 258–269. [CrossRef] [Google Scholar]
  • Sarrazin F., Loubière K., Prat L., Gourdon C., Bonometti T., Magnaudet J. (2006) Experimental and numerical study of droplets hydrodynamics in microchannels, AIChE J. 52, 12, 4061–4070. [CrossRef] [Google Scholar]
  • Sarrazin F., Prat L., Di Miceli N., Cristobal G., Link D.R., Weitz D.A. (2007) Mixing characterization inside microdroplets engineered on a microcoalescer, Chemical Engineering Science 62, 4, 1042–1048. [CrossRef] [Google Scholar]
  • Shen Y., Maamor A., Abu-Dharieh J., Thompson J.M., Kalirai B., Stitt E.H., Rooney D.W. (2014) Moving from Batch to Continuous Operation for the Liquid Phase Dehydrogenation of Tetrahydrocarbazole, Organic Process Research and Development 18, 3, 392–401. [CrossRef] [Google Scholar]
  • Stankiewicz A.I., Moulijn J.A. (2000) Process intensification: Transforming chemical engineering, Chemical Engineering Progress 96, 1, 22–34. [Google Scholar]
  • Stankiewicz A.I., Moulijn J.A. (2003) Re-Engineering the Chemical Processing Plant: Process Intensification, CRC Press. [CrossRef] [Google Scholar]
  • Syrris Flow Chemistry Systems, available in www.syrris.com/. [Google Scholar]
  • Tsouris C., Porcelli J.V. (2003) Process intensification - Has its time finally come?, Chemical Engineering Progress 99, 10, 50–55. [Google Scholar]
  • Uniqsis Flow Chemistry, available in www.uniqsis.com. [Google Scholar]
  • Van Gerven T., Stankiewicz A.I. (2009) Structure Energy, Synergy, Time - The Fundamentals of Process Intensification, Industrial and Engineering Chemistry Research 48, 5, 2465–2474. [CrossRef] [Google Scholar]
  • Vapourtech Flow Chemistry, available in www.vapourtec.co.uk. [Google Scholar]
  • Villermaux J. (1985) Génie de la réaction chimique : conception et fonctionnement des réacteurs, Lavoisier. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.