Dossier: Post Combustion CO2 Capture
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 5, September-October 2014
Dossier: Post Combustion CO2 Capture
Page(s) 885 - 902
DOI https://doi.org/10.2516/ogst/2013136
Published online 21 January 2014
  • Appl M., Wagner U., Henrici H.J., Kuessner K., Volkamer F., Ernst-Neust N. (1982) Removal of CO2 and/or H2S and/or COS from gases containing these constituents, US Patent 4336233.
  • Bindwal A.B., Vaidya P.D., Kenig E.Y. (2011) Kinetics of carbon dioxide removal by aqueous diamines, Chem. Eng. J. 169, 1–3, 144–150. [CrossRef]
  • Bishnoi S. (2000) Carbon Dioxide Absorption and Solution Equilibrium in Piperazine Activated Methyldiethanolamine, PhD Dissertation, The University of Texas.
  • Bishnoi S., Rochelle G.T. (2000) Absorption of carbon dioxide into aqueous piperazine: reactions kinetics, mass transfer and solubility, Chem. Eng. Sci. 55, 22, 5531–5543. [CrossRef]
  • Bishnoi S., Rochelle G.T. (2002) Absorption of carbon dioxide in aqueous piperazine/methyldiethanolamine, AICHE J. 48, 2788–2799. [CrossRef]
  • Caplow M. (1968) Kinetics of carbamate formation and breakdown, J. Am. Chem. Soc. 90, 6795–6803. [CrossRef]
  • Chakravarty T., Phukan U.K., Weiland R.H. (1985) Reaction of Acid Gases with Mixtures of Amines, Chem. Eng. Prog. 81, 32–36.
  • Crooks J.E., Donnellan J.P. (1989) Kinetics and Mechanism of the Reaction Between Carbon-Dioxide and Amines in Aqueous-Solution, J. Chem. Soc.-Perkin Transa. 2, 331–333. [CrossRef]
  • Cullinane J.T. (2005) Thermodynamics and Kinetics of Aqueous Piperazine with Potassium Carbonate for Carbon Dioxide Absorption, PhD Dissertation, The University of Texas.
  • Danckwerts P.V. (1979) The reaction of CO2 with ethanolamines, Chem. Eng. Sci. 34, 443–446. [CrossRef]
  • da Silva E.F., Svendsen H.F. (2004) Ab initio study of the reaction of carbamate formation from CO2 and alkanolamines, Ind. Eng. Chem. Res. 43, 3413–3418. [CrossRef]
  • DeCoursey W. (1974) Absorption with chemical reaction: development of a new relation for the Danckwerts model, Chem. Eng. Sci. 29, 1867–1872. [CrossRef]
  • Derks P.W.J., Kleingeld T., van Aken C., Hogendoorn J.A., Versteeg G.F. (2006) Kinetics of absorption of carbon dioxide in aqueous piperazine solutions, Chem. Eng. Sci. 61, 6837–6854. [CrossRef]
  • Dugas R. (2009) Carbon Dioxide Absorption, Desorption, and Diffusion in Aqueous Piperazine and Monoethanolamine, PhD Dissertation, The University of Texas.
  • Hamborg E.S., Versteeg G.F. (2009) Dissociation Constants and Thermodynamic Properties of Amines and Alkanolamines from (293 to 353) K, J. Chem. Eng. Data 54, 1318–1328. [CrossRef]
  • Hilliard M. (2005) Thermodynamics of Aqueous Piperazine/Potassium Carbonate/Carbon Dioxide Characterized by the Electrolyte NRT Model within Aspen Plus®, MS Thesis, The University of Texas.
  • Hogendoorn J., Vas Bhat R., Kuipers J., Van Swaaij W., Versteeg G. (1997) Approximation for the enhancement factor applicable to reversible reactions of finite rate in chemically loaded solutions, Che. Eng. Sci. 52, 4547–4559. [CrossRef]
  • Ko J.J., Tsai T.C., Lin C.Y. (2001) Diffusivity of nitrous oxide in aqueous alkanolamine solutions, J. Chem. Eng. Data 46, 160–165. [CrossRef]
  • Littel R.J., Versteeg G.F., van Swaaij W.P.M. (1992) Kinetics of CO2 with Primary and Secondary-Amines in Aqueous-Solutions.1. Zwitterion Deprotonation Kinetics for DEA and DIPA in Aqueous Blends of Alkanolamines, Chem. Eng. Sci. 47, 2027–2035. [CrossRef]
  • Pacheco M. (1998) Mass Transfer, Kinetics and Rate-Based Modeling of Reactive Absorption, PhD Dissertation, The University of Texas.
  • Pinsent B.R.W., Pearson L., Roughton F.J.W. (1956) The kinetics of combination of carbon dioxide with hydroxide ions, Trans. Faraday Soc. 52, 1512–1520. [CrossRef]
  • Poling B.R., Prausnitz J.M., O’Connell J.P. (2000) The Properties of gases and liquids, McGraw-Hill, Fifth Edition.
  • Rinker E.B., Ashour S.S., Sandall O.C. (1996) Kinetics and modeling of carbon dioxide absorption into aqueous solutions of diethanolamine, Ind. Eng. Chem. Res. 35, 1107–1114. [CrossRef]
  • Rinker E.B., Ashoun S.S., Sandall O.C. (2000) Absorption of carbon dioxide into aqueous blends of diethanolamine and methyldiethanolamine, Ind. Eng. Chem. Res. 39, 4346–4356. [CrossRef]
  • Samanta A., Roy S., Bandyopadhyay S.S. (2007) Physical Solubility and Diffusivity of N2O and CO2 in Aqueous Solutions of Piperazine and (N-Methyldiethanolamine + Piperazine), J. Chem. Eng. Data 52, 1381–1385. [CrossRef]
  • Samanta A., Bandyopadhyay S.S. (2007) Kinetics and modeling of carbon dioxide absorption into aqueous solutions of piperazine, Chem. Eng. Sci. 62, 7312–7319. [CrossRef]
  • Seo D.J., Hong W.H. (2000) Effect of piperazine on the kinetics of carbon dioxide with aqueous solutions of 2-amino-2-methyl-1-propanol, Ind. Eng. Chem. Res. 39, 2062–2067. [CrossRef]
  • Versteeg G.F., Van Dijck L.A.J., Van Swaaij W.P.M. (1996) On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions, An overview. Chemical Engineering Communications 144, 113–158. [CrossRef]
  • Xu G.W., Zhang C., Qin S., Wang Y. (1992) Kinetics Study on Absorption of Carbon-Dioxide Into Solutions of Activated Methyldiethanolamine, Ind. Eng. Chem. Res. 31, 921–927. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.