


INTRODUCTION

Located at the SOLEIL Synchrotron (Saint-Aubin,

France), IPANEMA is a platform that is unique in the

world, dedicated to the study of ancient material. It sup-

ports research projects on ancient material using the syn-

chrotron beamlines and develops novel methodological

tools to be used in these studies [1]. The high-quality

light produced by SOLEIL allows, for instance, high-res-

olution high signal-to-noise ratio spectral image acquisi-

tion, collecting a full high-resolution spectrum for each

pixel. These tools have proved to be very interesting in

the ancient material study context, as shown by the con-

clusive studies on Stradivarius [2] varnish and microscale

tissue discrimination in soft-bodied fossils from

Lagerstätten [3], for instance. While studies similar to

this one focus on a small set of fairly well pre-studied

samples, most work in archaeology, palaeontology and

cultural heritage would benefit better from the explora-

tion of a wider set of samples that are less well pre-

studied. In this context, it is beneficial to develop spectral

image analysis methodologies which are both robust to

low signal-to-noise ratio, enabling fast measurement of

a large sample set, and require only weak prior knowl-

edge of the samples.

Unsupervised spectral image segmentation is natu-

rally within the scope of spectral image processing and

has already been studied. While the result should be

close to supervised spectral image segmentation, in

which the number of classes is known and labeled exam-

ples are available for every class, unsupervised spectral

image segmentation is a much harder task. Two natural

approaches can be distinguished. In the first one, the spa-

tial (or region-based) one, regions are obtained by

locally grouping pixels with a similar spectrum using

image segmentation techniques. In the second one, the

spectral one, the spectra are clustered disregarding their

spatial position using unsupervised classification tech-

niques, and the regions are defined as the set of pixels

corresponding to spectra of the same classes. The first

approach yields regions that are adapted to the geomet-

rical structures of the images but fails to detect that two

disjoint regions may correspond to the same spectrum

class. The second approach has exactly the inverse

behavior. The first technique has been used, for instance,

by Tarabalka et al. [4] and Bunte et al. [5] while the sec-

ond has been used by Acito et al. [6] and Yang et al. [7].

Trying to combine these approaches to obtain a

method with only the advantages is thus natural. Several

directions have been explored, a review of which has

been carried out by Tarabalka [8]. Amongst them the

most classical are based on the hierarichal Markov field;

see, for instance, the work of Farag et al. [9], in which

spatial regularization is imposed on the clustering labels.

Another direction is that of Tarabalka et al. [10] in which

the regions are initially segmented using a spatial method

and then combined according to spectral criteria.

We consider the opposite direction: extending the

spectral methods to take into account the geometrical

nature of images. Our proposed contribution is based

on conditional density estimation by the penalized max-

imum likelihood technique that allows one to estimate

simultaneously the number of meaningful classes and

the pixel labels. Density estimation is already at the core

of the most classical spectral method in which the

observed spectra are modelized as a realization of a

Gaussian Mixture Model (GMM). As described, for

instance, by Biernacki et al. [11], for a given number of

classes, the parameters of this mixture can be estimated

and classes can be assigned by a simple maximum

likelihood or maximum a posteriori principle. Estimating

the number of classes can be performed in this setting by

the penalization technique, as shown by Maugis and

Michel [12]. Following ideas introduced by Kolaczyk

et al. [13] and Antoniadis et al. [14], we modeled the spa-

tial dependency through the mixing proportions of the

mixture: they will depend on the pixel position to take

into account the spatial inhomogeneity of spectral

images. More sophisticated spatial models have been

proposed, e.g. using a random Markov field to impose

spatial constraints on the mixture proportions [15], even

presenting efficient optimization algorithms for univari-

ate or color RGB images [16].Whilst avoiding the model

selection problem, these latter methods only consider the

semi-unsupervised case since the proposed algorithms

rely on the user to provide the number of classes,

K, and typically to set the spatial regularization

parameter(s).

Using the results we obtained in [17] and our extended

technical report [18], we propose a true unsupervised,

parameter-free methodology which includes the estima-

tion of the number of classes, their Gaussian parameters

and the spatially varying mixing proportions using a uni-

fied model selection approach. Compared with the work

of Kolaczyk et al. [13], our proposition does not require

a quantization step on the pixel-wise feature to be appli-

cable. Furthermore, the theoretical framework we are

using encompasses the frequent cases where the data is

not generated by any of the tested models and the user

is targeting a best approximating model within a set

rather than the true model. From now on, we will call

the model we are using a conditional Gaussian Mixture

Model (cGMM) hereafter. The purpose of this article is

to present the theoretical results, to describe an efficient

numerical implementation, to discuss its calibration and

to present some numerical experiments on a real dataset.
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1 UNSUPERVISED SEGMENTATION BY MODEL
SELECTION

Assume we observe a n1 � n2 spectral image S, we let

n ¼ n1 � n2 be the number of pixels, ðxiÞi2f1;...;ng
¼ ðx1;i; x2;iÞ
� �

i2f1;...;ng be an arbitrary ordered list of pixels

and SðxiÞ be the observed spectrum at pixel xi. Our goal is

to assign to each pixel a class bkðxÞ to which the spectrum

is supposed to belong. This implies estimating these clas-

ses as well as their number.

To this purpose, we use a statistical model in which

each class corresponds to a Gaussian model, as in a clas-

sical GMM, but whose mixing proportions depend on

the position. More precisely, we assume that the spectra

SðxiÞ are independent realizations of law of density

s0ð�jxiÞ with respect to the Lebesgue measure that

depends on the pixel position xi. We model this condi-

tional density by Gaussian mixtures sð� � � jxÞ with mixing

proportions depending on the position x:

sð�jxÞ ¼
XK

k¼1

pkðxÞUhk �ð Þ

with K the number of mixture components, lk the

mean of the kth component, Rk its covariance matrix,

hk ¼ ðlk ;RkÞ, pkðxÞ its proportion at the position x and

Uhk ðyÞ the density of a Gaussian of mean lk and covari-

ance Rk . Each Gaussian naturally corresponds to a spec-

trum class. As soon as these parameters have been

estimated (respectively, by bK , bhk and bpk), the spectral

image segmentation is obtained by a maximum likeli-

hood principle for the different classes:

bk yjxð Þ ¼ argmax bpkðxÞUbhk

ðyÞ

FollowingKolaczyk et al. [13] andAntoniadis et al. [14],

we consider mixing proportions that are piecewise

constant on a hierarchical partition P induced by a tree

structure, one of the recursive dyadic partitions of

Donoho [19]. The conditional densities we consider are

thus of the form:

sP;K;h;pð�jxÞ ¼
XK

k¼1

X

Rl2P
pk ½Rl�1 x2Rlf g

 !
Uhk �ð Þ

where P is a partition of X and p ¼ p½Rl�ð ÞRl2P, the
set of proportions on each hyperrectangle Rl, defines

the function p. These parameters, as well as the number

of classes K and the Gaussian parameters hk , will be esti-
mated by a penalized maximum likelihood principle as

described in [17, 18].

Assuming we know the number of classes K and the

partition P, as well as the structure of the K-uples of

the Gaussian parameters (for instance, by assuming

common covariance matrices or a common diagonaliza-

tion basis) defined by set G of possible parameter

K-uples, the only remaining parameters are the Gaussian

parameter K-uples itself as well as the proportions

ðp½Rl�ÞRl2P . It turns out that these parameters can be

easily estimated by a maximum likelihood principle

using an Expectancy Minimization (EM) type algo-

rithm. This maximum likelihood principle is not suffi-

cient to select the number of classes, the partition or

even the structure of the K-uples: the maximum likeli-

hood approach will overfit the data and always favors

the more complex model. To avoid this issue, we will

add a penalization term that should compensate for

the overfit due to the model complexity.

More precisely, we define a model SP;K;G by its number

of classes K, a recursive dyadic partitionP and a set G for

the K-uples ðUh1 ; . . . ;UhK Þ (or equivalently a set HG for

h ¼ ðh1; . . . ; hKÞÞ:

SP;K;G ¼ minfsP;K;h;pð�jxÞ; jðUh1 ; . . . ;UhK Þ
2 G; 8Rl 2 P; p½Rl� 2 SK�1g

where SK�1 is the K � 1 dimensional simplex. The

space G is chosen among the classical Gaussian

K-uples described in Biernacki et al. [11], that is

some set:

G½��K ¼ Uh1 ; . . . ;UhK

� �jh ¼ ðh1; . . . ; hKÞ 2 H½��K
n o

obtained by imposing some (mild) constraint on the

means lk (basically that they belong to a compact set)

and some (strong) constraints on the covariance matrices

Rk . The assumptions on the covariance range from the

weak assumption that the eigenvalues of the covariance

matrix are within a subset ½km; kM � with km > 0 to the

strong assumption that they are all spherical. They can

further be chosen independently for all classes or

assumed to share a structure; for instance, a common

diagonalization basis or the same value. We refer to

our technical report [18] for more details.

For a given model SP;K;G, we will use the maximum

likelihood estimate:

bsP;K;GðSijxiÞ ¼ argmin
sP;K;G 2 SP;K;G

Xn

i¼1

� lnðsP;K;GðSijxiÞÞ
 !

As explained below, the maximum likelihood value

grows as the complexity of the models increases; in order
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to select a reasonable model, we will add a penalty term

penðP;K;GÞ that will counterbalance this effect and

select the model dP;K;G that minimizes:

Xn

i¼1

� lnðbsP;K;GðSijxiÞÞ
 !

þ pen P;K;Gð Þ

Choosing the penalty penðP;K;GÞ appropriately is

obviously of crucial importance. A key result of our

theoretical analysis, recalled in Appendix, is that the

choice:

pen P;K;Gð Þ ¼ ek 1dim SP;K;G
� �þ ek 2jjPjj

(where jjPjj is the number of regions in the partition) is a

good choice in terms of conditional density estimation.

Although there is no theoretical guarantee that this is a

good choice in term of unsupervised segmentation, we

will nevertheless use this penalty as if our task was con-

ditional density estimation. As:

dimðSP;K;GÞ ¼ jjPjjðK � 1Þ þ dim Gð Þ

this penalty can be rewritten as:

pen P;K;Gð Þ ¼
X

Rl2P
ek 1 K � 1ð Þ þ ek 2
� �

þ ek 1dim Gð Þ

which has an additive structure which is a key property

to derive the efficient estimation algorithm of the next

section.

2 AN EFFICIENT SEGMENTATION ALGORITHM

As described above, our procedure is based on two suc-

cessive minimizations: one should first find the maxi-

mum likelihood estimate bsP;K;G for every partition P,

every number K of classes and every set of Gaussian

K-uples within the collection and then only minimize

the penalized criterion involving those maximum likeli-

hood estimates. This is indeed the strategy used for the

classical GMM, for which no partition is used, and thus

the number of models remains OðKmaxÞ. Such an exhaus-

tive strategy becomes impossible when one optimizes the

partition, as the number of partitions grows exponen-

tially fast with n. To overcome this issue, we propose a

minimization algorithm that simultaneously computes

the best partition and the corresponding likelihood esti-

mate given a number K of classes and a set of Gaussian

K-uples. Only the optimization of the number of classes

and of the set of Gaussians used is performed by an

exhaustive search.

Our goal can be rewritten as the search for the mini-

mizer in , P; h 2 G and ðp½Rl�ÞRl2P 2 SK�1 of:

PLðP;K;G; h; pÞ ¼
Xn

i¼1

� ln
XK

k¼1

pk RðxiÞ
� �

Uhk ðSiÞ
! !

þ pen P;K;Gð Þ
 

where the penalty can be written in the following way:

pen P;K;Gð Þ ¼
X

Rl2P
penspaðKÞ þ penparðK;GÞ

Our main concern is the case:

penspa Kð Þ ¼ ek 1 K � 1ð Þ þ ek 2

and

penpar K;Gð Þ ¼ ek 1dim Gð Þ

Denoting with a slight abuse of notation:

sK;h;pðSÞ ¼
XK

k¼1

pk Uhk ðSÞ

this problem can thus be rewritten as the search for the

minimizer of:

PLðP;K;G; h; pÞ ¼
X

Rl2P

  
X

ijxi2Rl

� ln sK;h;p½Rl �ðSÞ
� �

!
þ penspaðKÞ

!

þ penparðK;GÞ

For a fixed number of classes K and a given structure

G for the Gaussian parameter K-uples, we perform this

minimization with an iterative scheme, very similar to

the classical EM algorithm, in which one alternately

modifies h, p and P :

� Initialization: let bP ð0Þ ¼ f½0; 1�2g be the trivial parti-

tion, let ðbhð0Þ; bpð0ÞÞ be the result of a classical EM ini-

tialization (for instance, with the best K-means

strategy; Biernacki et al. [11].)

� Optimization: given ðbP ðjÞ; bh
ðjÞ
; bpðjÞÞ,

1. Majorization (expectation) step: compute,

8i 2 f1; . . . ; ng; 8k 2 f0; . . . ;Kg,

bPðjÞ
k ½i� ¼

bpðjÞ
k ½ bRðjÞðxiÞ�UbhðjÞ

k

ðSiÞ
PK

k 0¼1
bpðjÞ
k 0 ½ bRðjÞðxiÞ�UbhðjÞ

k0
ðSiÞ
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2. Minimization step in h: using the technique used in

classical EM, compute bhðjþ1Þ the minimizer in G of:

Xn

i¼1

�
XK

k¼1

bPðjÞ
k ½i� lnUhk

ðSiÞ
 !

3. Minimization step in p: compute for all square Rl:

bpðjþ1Þ
k ½Rl� ¼

P
ijxi2Rl

bPðjÞ
k ½i�

P
ijxi2Rl

1

4. Per square cost computation: Compute for all

square Rl:

Cðjþ1Þ½Rl� ¼�
X

ijxi2Rl

ln
XK

k¼1

bpðjþ1Þ
k ½Rl�Ubh jþ1ð Þ

k

ðSiÞ
 !

þ penspaðKÞ
5. Minimization step in P: using a fast dynamic pro-

gramming strategy, compute bP ðjþ1Þ the minimizer

over all partitions of:
P

Rl2P
Cðjþ1Þ½Rl�

� Stopping criterion: stop when the decrease in the cost

is smaller than a prescribed precision for two consec-

utive steps.

This algorithm is, as hinted in its description, an

example of a Majorization-Minimization (MM) algo-

rithm, as is the Expectancy Minimization (EM)

algorithm. A detailed description can be found in

Appendix.

As often with the EM algorithm, initialization has to

be performed carefully. We initialize our algorithm with

the result of a classical GMM mixture model, one with

weights that do not depend on the position, and thus

partition is reduced to the unit square. This first estimate

is itself obtained by the classical EM algorithm, whose

initialization is obtained by selecting the parameter set

yielding the largest likelihood with a set of M runs of

K-means initialized by a random data subset. We used

M ¼ 10 and ran only 10 steps of K-means.

We stress the (lack of) theoretical convergence guar-

antee of this algorithm. Due to the complex structure

of the objective function (mainly its non-convexity), we

are only able to show that the algorithm converges to a

local optimum. A stochastic variant (SEM) in which

the expectation step is replaced by a random draw of

the unobserved label k½x� according to the the current

posterior law sK;hðiÞ;pðiÞ;PðiÞ½x�ðk½x�jS½x�Þ could be used to

remove this issue at a price of a slower convergence

speed.

An important practical issue is the choice of the

parameters ek 1 and ek 2 in the penalty:

pen P;K; pð Þ ¼ ek 1dimðSP;K;pÞ þ ek 2jjPjj
¼ P

Rl2P
ðek 1 K � 1ð Þ þ ek 2Þ þ ek 1 dimðGÞ

which corresponds to penspa Kð Þ ¼ ek 1 K � 1ð Þ þ ek 2 and
penpar K;Gð Þ ¼ ek 1dimðGÞ. We propose to use here the

slope heuristic introduced by Birgé and Massart [20] to

calibrate these constants from the observed data, as

described, for instance, by Baudry et al. [21] in a similar

setting. For the sake of completeness, this heuristic is

described in Appendix. Roughly speaking, the idea is

that these parameters can be estimated from the behav-

ior of the � log-likelihood of the most complex models:

it is expected that a good fit of its lower envelope can

be obtained with the shape of the penalty proposed in

the theorem and that using a penalty twice as larger as

the estimated one yields a good selection. More pre-

cisely, we use the following procedure:

1. Compute bsP;K;G and
Pn

i¼1 � logbsP;K;GðSi½xi�Þ for a col-
lection of complex models of various K, dimðGÞ and P

2. Compute a lower envelope:

FðP;K;DÞ ¼ inf jjPjj¼P;K;dimðGÞ¼D

Xn

i¼1
� log bs P;K;GðSi½xi�Þ

3. Robustly fit FðP;K;DÞ by ek 01 KP þ ek 02Dþ c
4. Set ek 1 ¼ 2ek 01 and ek 2 ¼ 2ek 01
Our implementation of the algorithm is thus parame-

terless; the only choice left to the operator is in the def-

inition of the collection of complex models used.

Following Baudry et al. [21], we can increase the robust-

ness of the selection using a stability principle: we com-

pute the penalty and the selected model for the

collection of the p most complex model for various p
and choose the penalty yielding the most selected model

complexity.

3 APPLICATIONS TO SPECTRAL IMAGES

To test the proposed algorithm, and more specifically the

usefulness of the spatial information in the segmenta-

tion/classification process, we used it on experimental

data measured in the context of a study of coating pro-

cesses in lutherie [2]. The sample is observed using Fou-

rier Transform Infrared microscopy (FTIR), producing

a full infrared spectrum for each pixel of the image, aim-

ing at the chemical characterization of the sample, and in

particular of the coating layer(s).

3.1 Sample

The studied sample is a thin cross-section of maple wood

with a single layer of hide glue on top of it, prepared

recently using materials and processes from the Cité de

la Musique, using materials of the same type and quality

that are used for lutherie. This sample is to serve as

Spatialized Gaussian Mixture Model and Model Selection
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Appendix A : Conditional Density Estimation by Model Selection

In [17] and the corresponding extended technical report [18], we showed that the penalty choice proposed here is a

good choice in terms of conditional density estimation. For the sake of completeness, we summarize here the impli-

cation of these results for spatialized Gaussian mixture models.

We should first specify our goodness criterion. The most natural quality measure in a maximum likelihood

approach is the the Kullback-Leibler divergence, KL. All the conditional densities appearing here are defined with

respect to the Lebesgue measure. We can thus write, with a slight abuse of notation:

KLðs; tÞ ¼ KLðsdk; tdkÞ ¼
R
X

sðyÞ
tðyÞ ln sðyÞ

tðyÞ tdðyÞ if sdk � tdk () 8x 2 X; sðxÞ ¼ 0 ) tðxÞ ¼ 0

þ1 otherwise

(

This divergence is an intrinsic quality measure; it does not depend on the choice of the reference measure but only

on the probability laws. This divergence should be further adapted to the conditional density setting. We are thus led

to the following natural tensorized divergence:

KL�n
k ðs; tÞ ¼ 1

n

Xn

i¼1

E KLkðsð�jxiÞ; tð�jxiÞÞ½ �

Unfortunately, we will not be able to control this divergence but only a slightly smaller one. More precisely, we use the

Jensen-Kullback-Leibler divergence JKLq with q 2 ð0; 1Þ defined by:

JKLq sdk; tdkð Þ ¼ JKLq;kðs; tÞ ¼ 1

q
KLk s; ð1� qÞsþ qtð Þ

already used by Massart [22], Birgé and Massart [23] and van de Geer [24]. This divergence is smaller than the

Kullback-Leibler one but larger than the squared Hellinger one, denoted d2kðs; tÞ. We define their tensorized counter-

part:

d2�n
k s; tð Þ ¼ 1

n

Xn

i¼1

E d2k s �jxið Þ; t �jxið Þð Þ� �

and

JKL�n
q;kðs; tÞ ¼

1

n

Xn

i¼1

E JKLq;kðsð�jxiÞ; tð�jxiÞÞ
� �

In [18], we show precisely that:

Theorem 1. Assume we observe (xi, Si) with unknown conditional density s0. Let bsm be a g-log-likelihood minimizer

in Sm:

Xn

i¼1

� lnðbs mðSijxiÞÞ 	 inf
sm2Sm

Xn

i¼1

� lnðsmðSijxiÞÞ
 !

þ g

For any q 2 ð0; 1Þ and for any C1 > 1, there exist a C
 > p and a C
 > 0, such that the penalized estimator bsbm with bm
such that:

Xn

i¼1

� lnðbsbm ðSijxiÞÞ þ penðbmÞ 	 inf
m2M

Xn

i¼1

� ln ðbsbmðSijxiÞÞ þ penðmÞ
 !

þ g0

satisfies:

E
h
JKL�n

q ðs0;bs dP;K;G Þ
i
	 C1 inf

ðP;K;GÞ2M
inf

sP;K;G2SP;K;G

KL�nðs0; sP;K;GÞ þ penðP;K;GÞ
n

� 	
þK0

n
þ gþ g0

n

	�
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as soon as:

pen P;K;Gð Þ � ek 1 dim sP;K;G
� �þ ek 2jjPjj

with:

ek 1 � k 2C
 þ c
 þ 1þ ln
n

eC


� 	

þ

� 	

and
ek 2 � C
k ln 2

with k > k0, where k0 is a constant that depends only on q and C1.

The variance of the maximum likelihood in each model is asymptotically of the order 2dimðsP;K;GÞ and a similar

bound also holds non-asymptotically [18]. The variance is thus up to a factor that may grow logarithmically with

n, of the order ðsP;K;GÞ. This implies that, again up to a factor that may grow logarithmically with n, the risk of the

penalized estimator is bounded by the best possible risk among the collection of models. This specific choice of penalty

is thus a good choice for conditional density estimation. Although this does not imply a good classification property,

this is sufficient to obtain the consistency of the number of classes and the parameters when the true conditional den-

sity is indeed a spatialized Gaussian mixture.

Appendix B: Detailed Description of the Optimization Algorithm

It is based on the construction of majorizations of PL which coincide at the current estimate and are easier to min-

imize. The remaining part of this section is devoted to the mathematical justification of this algorithm. To construct

the majorization, we extend at each pixel the observation of the spectrum S to the observation of the couple ðS; kÞwith
k 2 f1; . . . ;Kg. With a slight abuse of notation, we denote:

sK;h;pðS; kÞ ¼ pkU hk ðSÞ

the joint density with respect to the tensor product of the Lebesgue measure and the counting measure. This cor-

responds indeed to the way we assign each sample to its class through our MAP principle as:

sK;h;pðkjSÞ ¼ pkU hk ðSÞPK
k 0¼1 pk 0U h0k

ðSÞ

Using this notation, the weights computed in the majorization step can be rewritten as:

bPðjÞ
k i½ � ¼ s

K;bhðjÞ;bpðjÞ½Rl �
ðkjSiÞ

The key property is the following majorization property:

Lemma 1. Let ðbP ðjÞ; bhðjÞ; bpðjÞÞ be a current estimate, 8P; h 2 G; p � SjjPjjk�1

PLðP;K;G; h; pÞ 	 P
Rl�P

P
ijxi2Rl

� P
K

k¼1

bP ðjÞ
k ½i�pk ½Rl�

 !
þ penspaðKÞ

 !

þP
n

i¼1
�P

K

k¼1

bPðjÞ
k ½i� lnUhk

ðSiÞ
� 	

þ penparðK;GÞ

þP
n

i¼1

PK

k¼1

bP ðjÞ
k ½i� ln bP ðjÞ

k ½i�
� 	
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with equality when ðP; p; hÞ ¼ ðbP ðjÞ; bpðjÞ; bhðjÞÞ.
proved, using a conditioning with respect to k.

The minimization step in h corresponds exactly to the minimization of the right-hand side, a minimization that

reduces to the minimization of:

Xn

i¼1

�
XK

k¼1

bPðjÞ
k ½i� lnUhk

ðSiÞ
 !

This minimization has the exact same structure as the corresponding one in the classical Gaussian Mixture Model

(GMM) case. We can thus rely on the classical optimization technique described, for instance, by Biernacki et al [11]

This efficiently provides a new estimate bh
ðjþ1Þ

for the K-uples of Gaussian parameters within the prescribed set G.

Minimizing in P and p the same right-hand side is equivalent to minimizing:

X

Rl2P

X

ijxi2Rl

�
XK

k¼1

bPðjÞ
k ½i�ln pk ½Rl�

 !
þ penspaðKÞ

0
@

1
A

which have an additive structure with respect to the squares of the partition. Given a square Rl, a simple compu-

tation shows that the minimum of:

X

ijxi2Rl

�
XK

k¼1

bPðjÞ
k ½i�ln pk ½Rl�

 !
þ penspaðKÞ

is attained at:

bp jþ1ð Þ
k Rl½ � ¼

P
ijxi2Rl

bP jð Þ
k i½ �

P
injxi2Rl

1

Let Cðjþ1=2Þ½Rl� the value at this minimum:

Cðjþ1=2Þ½Rl� ¼
X

ijxi2Rl

�
XK

k¼1

bPðjÞ
k ½i�ln bpðjþ1Þ

k ½Rl�
 !

þ penspaðKÞ

the optimization in P becomes equivalent to the minimization of:

X

RleP

Cðjþ1Þ Rl½ �

Capitalizing on the tree structure of the dyadic recursive partition, one can use the fast dynamic programming strat-

egy of Donoho [19] and Huang et al. [25] described briefly in Appendix C, to obtain an optimal partition bP ðjþ1=2Þ. Note

that the algorithm could have been stopped here as, by construction:

PLðbP ðjÞ;K;G; hðjÞ; bpðjÞÞ � PLðbP ðjþ1=2Þ;K;G; hðjþ1Þ; bpðjþ1ÞÞ

A slight modification of the cost function, the one used in the description of the algorithm, yields a better partition

choice. Indeed:

PL bP jþ1
2ð Þ;K;G; h jþ1ð Þ; bp jþ1ð Þ

� �
¼ P

Rl2bP jþ1
2ð Þ

P
ijxi2Rl

�ln
PK

k¼1
bp jþ1ð Þ
k ½Rl�Ubh jþ1ð Þ

k

ðSiÞ
� 	

þ penspa Kð Þ
!

þ penpar þ ðK;GÞ
 

¼
X

Rl2bP ðjþ1=2Þ

Cðjþ1Þ½Rl� þ penparðK;GÞ
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so that the optimizer bP ðjþ1Þ
of:

X

Rl2P
Cðjþ1Þ½Rl�

the one proposed in the algorithm, can be obtained with the same dynamic programming algorithm and is such

that:

PLðbP ðjÞ;K;G; bhðjÞ; bpðjÞÞ � PLðbP ðjþ1Þ;K;G; bhðjþ1Þ; bpðjþ1ÞÞ � PLðeP ðjþ1Þ;K;G; bhðjþ1Þ; bpðjþ1ÞÞ

Proof of Lemma 1. We will be slightly more general in the proof and assume that the per rectangle penalty may

depends on R and p while the other may depends on h :

pen P;K;G; h; pð Þ ¼
X

Rl2P
penspa Rl;K; p Rl½ �ð Þ þ penparðK;G; hÞ

For any probability (qk) on the classes k:

ln Sk;h;p Sð Þ ¼ PK

k¼1
qk ln Sk;h;p Sð Þ

¼ PK

k¼1
qk ln

Sk;h;pðk;SÞqk
Sk;h;pðkjSÞqk

� �

¼ �P
K

k¼1
qk ln

�
qk

Sk;h;pðk;SÞ
�
þ P

K

k¼1
qk ln

qk
Sk;h;pðKjSÞ
� �

¼ �KL q; sK;h;pð:jSÞ
� �þ KL q; sK;h;pð:jSÞ

� �

Assume we have a “current” estimate (bp jð Þ; bhðjÞÞ and let:

qk ¼ s
K;bh jð Þ;bp jð Þ kjSð Þ ¼

bp jð Þ
k UbhðjÞ

k

ðSÞ
PK

k 0¼1 bp
jð Þ
k 0
UbhðjÞ

k0
ðSÞ

we obtain a surrogate function of –ln sK;h;p with the help of the previous formula:

� ln sK;h;p Sð Þ ¼ KL s
K;bh jð Þ;bp jð Þ �jSð Þ; sk;h;p �jSð Þ

� 	
� KL

�
s
K;bh jð Þ;bp jð Þ �jSð Þ; sK;h;p �jSð Þ

	

	 KL

�
s
K;bh jð Þ;bp jð Þ �jSð Þ; sK;h;p �jSð Þ

	

with equality when (p; h ¼ bp jð Þ; bh jð Þ
� �

This idea can be used pixelwise and thus starting with a current estimate cðP jð Þ; bh jð Þ; bp jð ÞÞ; one obtains:

X

R2P

X

ijxi2Rl

� ln sk;h;p½Rl �

0
@

1
A 	

X

Rl2P

X

ijxi2Rl

KLðs
K;bh jð Þ bR jð Þ

l xið Þ
� �

;bh jð Þ �jSi
� �

; sK;p Rl½ �;h �; Sið ÞÞ
0
@

1
A

with equality when P; p; hð Þ ¼ ðbP ðjÞ; bpðjÞ; bhðjÞÞ. Adding the penalties yields:

PL P;K;G; h; pð Þ 	
X

Rl2P

X

ijxi2Rl

KL
�
s
K;bp jð Þ bR jð Þ

l xið Þ
� �

;bh jð Þ �; Sið Þ; sK;p Rl½ �;h �jSi
� �

penspaðRl;K; p½Rl�Þ
!

þ penparðK;G; hÞ
0
@
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still with equality when P; p; hð Þ ¼ ðbP ðjÞ; bpðjÞ; bhðjÞÞ. This right-hand side can be rewritten:

P
Rl2P

P
ijxi2Rl

KL s
K;bh jð Þ;bpðjÞ bR jð Þ

l xið Þ
� � �jSi

� �
; sK;h;p Rl½ � :; Sið ÞÞ þ penspaðRl;K;p½Rl�

� 	 !
þ penparðK;G; hÞ

¼ P
Rl2P

� P
ijxi2Rl

�P
K

k¼1
s
K;bh jð Þ ;bpðjÞ bR jð Þ

l xið Þ
� �

;
kjSi
� �

ln sK;h;p Rl½ � k; Sið Þ
� 	

þ penspaðRl;K; p½Rl�Þ
	
þ penpar K;G; hð Þ

þ P
Rl2P

P
ijxi2Rl

PK

k¼1
s
K;bh jð Þ ;bpðjÞ bR jð Þ

l xið Þ
� �

;
kjSi
� �

ln s
K;bh jð Þ ;bp jð Þ bR jð Þ

l xið Þ
� � kjSi

� �
 !

or using the notation bPðjÞ
k i½ � ¼ s

K;bh jð Þ;bp jð Þ bR jð Þ
l xið Þ

� � kjSi
� �

:

¼ P
Rl2P

P
ijxi2Rl

�P
K

k¼1

bP jð Þ
k i½ � In sK;h;p Rl½ �ðk; SiÞ þ penspaðRl;K; p½Rl�Þ

� 	
þ penpar K;G; hð Þ

 !

þP
n

i¼1

PK

k¼1

bP jð Þ
k i½ � ln bP jð Þ

k i½ �
� 	

¼ P
Rl2P

P
ijxi2Rl

�P
K

k¼1

bP jð Þ
k i½ � ln pk Rl½ �

� 	
þ penspaðRl;K; p½Rl�Þ

 !

þP
n

i¼1
�P

K

k¼1

bP jð Þ
k i½ � lnUhkSi

� 	
þ penpar K;G; hð Þ þP

n

i¼1

PK

k¼1

bP jð Þ
k i½ � ln bP jð Þ

k i½ �
! 

Appendix C: Partition Optimization Algorithm

The fast linear programming strategy used to minimize over the set of dyadic partitions an additive cost:

X

Rl2P
CðRlÞ

capitalizes on the quadtree structure of those dyadic partitions. For any leafR, we denote PðRÞ a generic partition
of R and ePðRÞ the one minimizing the local cost,

P
Rl2pðRÞCðRlÞ:

The key observation is that the best partition ePðR0Þ of a squareR0 is either the whole squareR0 or the union of the

best partitions of its four subsquaresR1;R2;R3 andR4. Furthermore, the decision is obtained by comparing the cost

of these two possibilities. If we denote:

eC ðRÞ ¼
X

Rl2eP ðRÞCðRlÞ

ePðR0Þ ¼ R0f g if CðR0Þ 	
P4

i¼1

eC ðRÞ
[4
i¼1
eP ðRiÞ otherwise

8
<
:

This leads to a recursive algorithm as soon as one notes that there is a minimal size for the subsquares, for which the

only possible partition is the trivial one, thus allowing the initialization of the recursion.
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