IFP Energies nouvelles International Conference: LES4ICE 2012 - Large Eddy Simulation for Internal Combustion Engine Flows
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 1, January-February 2014
IFP Energies nouvelles International Conference: LES4ICE 2012 - Large Eddy Simulation for Internal Combustion Engine Flows
Page(s) 83 - 105
DOI https://doi.org/10.2516/ogst/2013121
Published online 27 November 2013
  • URL http://www.agence-nationale-recherche.fr/projet-anr/? tx Iwmsuivibilan_pi%5BCODE%5D=ANR-10-VPTT-0002 [Google Scholar]
  • Michel J.-B., Lecocq G., Richard S., Vervisch L. (2011) A new LES model coupling flame surface density and tabulated kinetics approaches to investigate knock and pre- ignition in piston engines, Proc. Combust. Inst. 33, 6, 1215-1226. [Google Scholar]
  • Gourdain N., Gicquel L., Montagnac M., Vermorel O., Gazaix M., Staffelbach G., Garcia M., Boussuage J.F., Poinsot T. (2009) High performances parallel computing of flows in complex geometries — Part 1: methods, Comput. Sci. Disc. 2, 26. [Google Scholar]
  • Gourdain N., Gicquel L., Staffelbach G., Vermorel O., Duchaine F., Boussuage J.F., Poinsot T. (2009) High performance parallel computing of flows in complex geometries — Part 2: applications, Comput. Sci. Disc. 2, 28. [Google Scholar]
  • Pope S.B. (2004) Ten questions concerning the large-eddy simulation of turbulent flows, New J. Phys. 6, 35. [CrossRef] [Google Scholar]
  • Vermorel O., Richard S., Colin O., Angelberger C., Benkenida A., Veynante D. (2009) Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES, Combust. Flame 156, 8, 1525-1541. [CrossRef] [Google Scholar]
  • Enaux B., Granet V., Vermorel O., Lacour C., Thobois L., Dugué V., Poinsot T. (2011) Large eddy simulation of a motored single-cylinder piston engine: numerical strategies and validation, Flow, Turbulence Combust. 86, 2, 153-177. [CrossRef] [Google Scholar]
  • Jhavar R., Rutland C.J. (2006) Using large-eddy simulations to study mixing effects in early injection diesel engine combustion, SAE Paper 2006-1-0871. [Google Scholar]
  • Dugue V., Gauchet N., Veynante D. (2006) Applicability of large eddy simulation to the fluid mechanics in a real engine configuration by means of an industrial code, SAE Paper 2006-01-1194. [Google Scholar]
  • Goryntsev D., Sadiki A., Klein M., Janicka J. (2009) Large eddy simulation based analysis of the effects of cycle-tocycle variations on air-fuel mixing in realistic DISI IC- engines, Proc. Combust. Inst. 32, 2759-2766. [CrossRef] [Google Scholar]
  • Celik I., Yavuz I., Smirnov A. (2001) Large eddy simulations of in-cylinder turbulence for internal combustion engines: a review, Int. J. Engine Res. 2, 2, 119-148. [CrossRef] [Google Scholar]
  • Richard S., Colin O., Vermorel O., Benkenida A., Angelberger C., Veynante D. (2007) Towards large eddy simulation of combustion in spark ignition engines, Proc. Combust. Inst. 31, 3059-3066. [CrossRef] [MathSciNet] [Google Scholar]
  • Granet V., Vermorel O., Lacour C., Enaux B., Dugué V., Poinsot T. (2012) Large-Eddy Simulation and experimental study of cycle-to-cycle variations of stable and unstable operating points in a spark ignition engine, Combust. Flame 159, 1562-1575. [CrossRef] [Google Scholar]
  • Smagorinsky J. (1963) General circulation experiments with the primitive equations: 1. The basic experiment, Mon. Weather Rev. 91, 99-164. [NASA ADS] [CrossRef] [Google Scholar]
  • Germano M., Piomelli U., Moin P., Cabot W. (1991) A dynamic subgrid-scale eddy viscosity model, Phys. Fluids 3, 7, 1760-1765. [NASA ADS] [CrossRef] [Google Scholar]
  • Celik I., Yavuz I., Smirnov A., Smith J., Amin E., Gel A. (2000) Prediction of in-cylinder turbulence for IC engines, Combust. Sci. Technol. 153, 339-368. [CrossRef] [Google Scholar]
  • Enaux B., Granet V., Vermorel O., Lacour C., Pera C., Angelberger C., Poinsot T. (2011) LES and experimental study of cycle-to-cycle variations in a spark ignition engine, Proc. Combust. Inst. 33, 3115-3122. [CrossRef] [Google Scholar]
  • Haworth D. (1999) Large-eddy simulation of in-cylinder flows, Oil Gas Sci. Technol. 54, 2, 175-185. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lax P.D., Wendroff B. (1964) Difference schemes for hyperbolic equations with high order of accuracy, Commun. Pure Appl. Math. 17, 381-398. [CrossRef] [Google Scholar]
  • Colin O., Rudgyard M. (2000) Development of high-order Taylor-Galerkin schemes for unsteady calculations, J. Comput. Phys. 162, 2, 338-371. [CrossRef] [Google Scholar]
  • Lacour C., Pera C., Enaux B., Vermorel O., Angelberger C., Poinsot T. (2009) Exploring cyclic variability in a spark-ignition engine using experimental techniques, system simulation and large-eddy simulation, Proc. of the 4th European Combustion Meeting, Vienne, Austria, 14-17 April. [Google Scholar]
  • Baya Toda H., Cabrit O., Balarac G., Bose S., Lee J., Choi H., Nicoud F. (2010) A subgrid-scale model based on singular values for LES in complex geometries, in Proc. Summer Program, Stanford, Center for Turbopence Reseach, NASA Ames/Stanford University, pp. 193-202. [Google Scholar]
  • Lilly D.K. (1992) A proposed modification of the germano sub-grid closure method, Phys. Fluids 4, 3, 633-635. [CrossRef] [Google Scholar]
  • Meneveau C., Lund T. (1997) The dynamic Smagorinsky model and scale-dependent coefficients in the viscous range of turbulence, Phys. Fluids 9, 12, 3932-3934. [CrossRef] [MathSciNet] [Google Scholar]
  • Mittal R., Moin P. (1997) Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows, AIAA J. 35, 1415-1417. [CrossRef] [Google Scholar]
  • Morinishi Y., Tamano S., Nakabayashi K. (2004) Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls, J. Fluid Mech. 502, 273-308. [CrossRef] [Google Scholar]
  • Pera C., Richard S., Angelberger C. (2012) Exploitation of multi-cycle engine LES to introduce physical perturbations in 1D engine models for reproducing CCV, SAE Paper 2012-01-0127. [Google Scholar]
  • Riber E., Moureau V., Garcia M., Poinsot T., Simonin O. (2009) Evaluation of numerical strategies for LES of two-phase reacting flows, J. Comput. Phys. 228, 2, 539-564. [CrossRef] [Google Scholar]
  • Sanjosé M., Senoner J.M., Jaegle F., Cuenot B., Moreau S., Poinsot T. (2011) Fuel injection model for Euler—Euler and Euler—Lagrange large-eddy simulations of an evaporating spray inside an aeronautical combustor, Int. J. Multiphase Flow 37, 5, 514-529. [CrossRef] [Google Scholar]
  • Colin O., Ducros F., Veynante D., Poinsot T. (2000) A thickened flame model for large eddy simulations of turbulent premixed combustion, Phys. Fluids 12, 7, 1843-1863. [CrossRef] [Google Scholar]
  • Yeung P.K., Girimaji S.S., Pope S.B. (1990) Straining and scalar dissipation on material surfaces in turbulence: implications for flamelets, Combust. Flame 79, 340-365. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.