IFP Energies nouvelles International Conference: LES4ICE 2012 - Large Eddy Simulation for Internal Combustion Engine Flows
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Numéro 1, January-February 2014
IFP Energies nouvelles International Conference: LES4ICE 2012 - Large Eddy Simulation for Internal Combustion Engine Flows
Page(s) 83 - 105
DOI https://doi.org/10.2516/ogst/2013121
Publié en ligne 27 novembre 2013
  • URL http://www.agence-nationale-recherche.fr/projet-anr/? tx Iwmsuivibilan_pi%5BCODE%5D=ANR-10-VPTT-0002 [Google Scholar]
  • Michel J.-B., Lecocq G., Richard S., Vervisch L. (2011) A new LES model coupling flame surface density and tabulated kinetics approaches to investigate knock and pre- ignition in piston engines, Proc. Combust. Inst. 33, 6, 1215-1226. [Google Scholar]
  • Gourdain N., Gicquel L., Montagnac M., Vermorel O., Gazaix M., Staffelbach G., Garcia M., Boussuage J.F., Poinsot T. (2009) High performances parallel computing of flows in complex geometries — Part 1: methods, Comput. Sci. Disc. 2, 26. [Google Scholar]
  • Gourdain N., Gicquel L., Staffelbach G., Vermorel O., Duchaine F., Boussuage J.F., Poinsot T. (2009) High performance parallel computing of flows in complex geometries — Part 2: applications, Comput. Sci. Disc. 2, 28. [Google Scholar]
  • Pope S.B. (2004) Ten questions concerning the large-eddy simulation of turbulent flows, New J. Phys. 6, 35. [NASA ADS] [CrossRef] [Google Scholar]
  • Vermorel O., Richard S., Colin O., Angelberger C., Benkenida A., Veynante D. (2009) Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES, Combust. Flame 156, 8, 1525-1541. [CrossRef] [Google Scholar]
  • Enaux B., Granet V., Vermorel O., Lacour C., Thobois L., Dugué V., Poinsot T. (2011) Large eddy simulation of a motored single-cylinder piston engine: numerical strategies and validation, Flow, Turbulence Combust. 86, 2, 153-177. [CrossRef] [Google Scholar]
  • Jhavar R., Rutland C.J. (2006) Using large-eddy simulations to study mixing effects in early injection diesel engine combustion, SAE Paper 2006-1-0871. [Google Scholar]
  • Dugue V., Gauchet N., Veynante D. (2006) Applicability of large eddy simulation to the fluid mechanics in a real engine configuration by means of an industrial code, SAE Paper 2006-01-1194. [Google Scholar]
  • Goryntsev D., Sadiki A., Klein M., Janicka J. (2009) Large eddy simulation based analysis of the effects of cycle-tocycle variations on air-fuel mixing in realistic DISI IC- engines, Proc. Combust. Inst. 32, 2759-2766. [CrossRef] [Google Scholar]
  • Celik I., Yavuz I., Smirnov A. (2001) Large eddy simulations of in-cylinder turbulence for internal combustion engines: a review, Int. J. Engine Res. 2, 2, 119-148. [CrossRef] [Google Scholar]
  • Richard S., Colin O., Vermorel O., Benkenida A., Angelberger C., Veynante D. (2007) Towards large eddy simulation of combustion in spark ignition engines, Proc. Combust. Inst. 31, 3059-3066. [CrossRef] [MathSciNet] [Google Scholar]
  • Granet V., Vermorel O., Lacour C., Enaux B., Dugué V., Poinsot T. (2012) Large-Eddy Simulation and experimental study of cycle-to-cycle variations of stable and unstable operating points in a spark ignition engine, Combust. Flame 159, 1562-1575. [CrossRef] [Google Scholar]
  • Smagorinsky J. (1963) General circulation experiments with the primitive equations: 1. The basic experiment, Mon. Weather Rev. 91, 99-164. [NASA ADS] [CrossRef] [Google Scholar]
  • Germano M., Piomelli U., Moin P., Cabot W. (1991) A dynamic subgrid-scale eddy viscosity model, Phys. Fluids 3, 7, 1760-1765. [NASA ADS] [CrossRef] [Google Scholar]
  • Celik I., Yavuz I., Smirnov A., Smith J., Amin E., Gel A. (2000) Prediction of in-cylinder turbulence for IC engines, Combust. Sci. Technol. 153, 339-368. [CrossRef] [Google Scholar]
  • Enaux B., Granet V., Vermorel O., Lacour C., Pera C., Angelberger C., Poinsot T. (2011) LES and experimental study of cycle-to-cycle variations in a spark ignition engine, Proc. Combust. Inst. 33, 3115-3122. [CrossRef] [Google Scholar]
  • Haworth D. (1999) Large-eddy simulation of in-cylinder flows, Oil Gas Sci. Technol. 54, 2, 175-185. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lax P.D., Wendroff B. (1964) Difference schemes for hyperbolic equations with high order of accuracy, Commun. Pure Appl. Math. 17, 381-398. [CrossRef] [Google Scholar]
  • Colin O., Rudgyard M. (2000) Development of high-order Taylor-Galerkin schemes for unsteady calculations, J. Comput. Phys. 162, 2, 338-371. [CrossRef] [Google Scholar]
  • Lacour C., Pera C., Enaux B., Vermorel O., Angelberger C., Poinsot T. (2009) Exploring cyclic variability in a spark-ignition engine using experimental techniques, system simulation and large-eddy simulation, Proc. of the 4th European Combustion Meeting, Vienne, Austria, 14-17 April. [Google Scholar]
  • Baya Toda H., Cabrit O., Balarac G., Bose S., Lee J., Choi H., Nicoud F. (2010) A subgrid-scale model based on singular values for LES in complex geometries, in Proc. Summer Program, Stanford, Center for Turbopence Reseach, NASA Ames/Stanford University, pp. 193-202. [Google Scholar]
  • Lilly D.K. (1992) A proposed modification of the germano sub-grid closure method, Phys. Fluids 4, 3, 633-635. [CrossRef] [Google Scholar]
  • Meneveau C., Lund T. (1997) The dynamic Smagorinsky model and scale-dependent coefficients in the viscous range of turbulence, Phys. Fluids 9, 12, 3932-3934. [CrossRef] [MathSciNet] [Google Scholar]
  • Mittal R., Moin P. (1997) Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows, AIAA J. 35, 1415-1417. [CrossRef] [Google Scholar]
  • Morinishi Y., Tamano S., Nakabayashi K. (2004) Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls, J. Fluid Mech. 502, 273-308. [CrossRef] [Google Scholar]
  • Pera C., Richard S., Angelberger C. (2012) Exploitation of multi-cycle engine LES to introduce physical perturbations in 1D engine models for reproducing CCV, SAE Paper 2012-01-0127. [Google Scholar]
  • Riber E., Moureau V., Garcia M., Poinsot T., Simonin O. (2009) Evaluation of numerical strategies for LES of two-phase reacting flows, J. Comput. Phys. 228, 2, 539-564. [CrossRef] [Google Scholar]
  • Sanjosé M., Senoner J.M., Jaegle F., Cuenot B., Moreau S., Poinsot T. (2011) Fuel injection model for Euler—Euler and Euler—Lagrange large-eddy simulations of an evaporating spray inside an aeronautical combustor, Int. J. Multiphase Flow 37, 5, 514-529. [CrossRef] [Google Scholar]
  • Colin O., Ducros F., Veynante D., Poinsot T. (2000) A thickened flame model for large eddy simulations of turbulent premixed combustion, Phys. Fluids 12, 7, 1843-1863. [CrossRef] [Google Scholar]
  • Yeung P.K., Girimaji S.S., Pope S.B. (1990) Straining and scalar dissipation on material surfaces in turbulence: implications for flamelets, Combust. Flame 79, 340-365. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.