IFP Energies nouvelles International Conference: LES4ICE 2012 - Large Eddy Simulation for Internal Combustion Engine Flows
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 1, January-February 2014
IFP Energies nouvelles International Conference: LES4ICE 2012 - Large Eddy Simulation for Internal Combustion Engine Flows
Page(s) 107 - 128
DOI https://doi.org/10.2516/ogst/2013142
Published online 13 November 2013
  • Young M. (1981) Cyclic Dispersion in the Homogeneous- Charge Spark-Ignition Engine—A Literature Survey, SAE Technical Paper 810020, doi: 10.4271/810020. [Google Scholar]
  • Ozdor N., Dulger M., Sher E. (1994) Cyclic Variability in Spark Ignition Engines A Literature Survey, SAE Technical Paper 940987, doi: 10.4271/940987. [Google Scholar]
  • Hamai K., Kawajiri H., Ishizuka T., Nakai M. (1988) Combustion fluctuation mechanism involving cycle-tocycle spark ignition variation due to gas flow motion in S. I. Engines, Int. Symp. Combust. 21, 1, 505-512. [CrossRef] [Google Scholar]
  • Hill P.G., Kapil A. (1989) The relationship between cyclic variations in spark-ignition engines and the small structure of turbulence, Combust. Flame 78, 2, 237-247. [CrossRef] [Google Scholar]
  • Aleiferis P.G., Hardalupas Y., Taylor A.M.K.P., Ishii K., Urata Y. (2004) Flame chemiluminescence studies of cyclic combustion variations and air-to-fuel ratio of the reacting mixture in a lean-burn stratified-charge spark-ignition engine, Combust. Flame 136, 1-2, 72-90. [CrossRef] [Google Scholar]
  • Bates S. (1989) Flame Imaging Studies of Cycle-by-Cycle Combustion Variation in a SI Four-Stroke Engine, SAE Technical Paper 892086, doi: 10.4271/892086. [Google Scholar]
  • Nwagwe I.K., Weller H.G., Tabor G.R., Gosman A.D., Lawes M., Sheppard C.G.W., Wooley R. (2000) Measurements and large eddy simulations of turbulent premixed flame kernel growth, Proc. Combust. Inst. 28, 1, 59-65. [CrossRef] [Google Scholar]
  • Barlow R.S. (2007) Laser diagnostics and their interplay with computations to understand turbulent combustion, Proc. Combust. Inst. 31, 1, 49-75. [CrossRef] [Google Scholar]
  • Rogallo R., Moin P. (1984) Numerical Simulation of Turbulent Flows, Annu. Rev. Fluid Mech. 16, 99-137. [CrossRef] [Google Scholar]
  • Meneveau C., Katz J. (2000) Scale-invariance and turbulence models for large-eddy simulation, Annu. Rev. Fluid Mech. 32, 1-32. [NASA ADS] [CrossRef] [Google Scholar]
  • Pope S.B. (2004) Ten questions concerning the large-eddy simulation of turbulent flows, New J. Phys. 6, 35. [CrossRef] [Google Scholar]
  • Lesieur M., Métais O., Compte P. (2005) Large-Eddy Simulations of Turbulence, Cambridge University Press, UK. [Google Scholar]
  • Rutland C.J. (2011) Large-eddy simulations for internal combustion engines – a review, Int. J. Engine Res. 12, 421-451. [CrossRef] [EDP Sciences] [Google Scholar]
  • Pitsch H., Desjardins O., Balarac G., Ihme M. (2008) Large-eddy simulation of turbulent reacting flows, Prog. Aerosp. Sci. 44, 6, 466-478 [CrossRef] [Google Scholar]
  • Knudsen E.W., Pitsch H. (2010) Large-Eddy Simulation for Combustion Systems: Modeling Approaches For Partially Premixed Flows, TOTHERJ 4, 76-85. [CrossRef] [Google Scholar]
  • Goryntsev D., Sadiki A., Klein M., Janicka J. (2009) Large eddy simulation based analysis of the effects of cycle-tocycle variations on air—fuel mixing in realistic DISI IC- engines, Proc. Combust. Inst. 32, 2, 2759-2766. [CrossRef] [Google Scholar]
  • Haworth D.C. (1999) Large-Eddy Simulation of in-Cylinder Flows, Oil Gas Sci, Technol. - Rev. IFP 54, 2, 175-185. [CrossRef] [EDP Sciences] [Google Scholar]
  • Haworth D.C., Jansen K. (2000) Large-eddy simulation on unstructured deforming meshes: towards reciprocating IC engines, Comput. Fluids 29, 5, 493-524. [CrossRef] [Google Scholar]
  • Fogleman M., Haworth D.C., Rempfer D., Lumley J.L. (2004) Application of the Proper Orthogonal Decomposition to Datasets of Internal Combustion Engine Flows, J. Turbul. 5, 1-18. [CrossRef] [Google Scholar]
  • Dugué V., Gauchet N., Veynante D. (2006) Applicability of Large Eddy Simulation to the Fluid Mechanics in a Real Engine Configuration by Means of an Industrial Code, SAE Technical Paper 2006-01-1194, doi: 10.4271/2006-01-1194. [Google Scholar]
  • Adomeit P., Lang O., Pischinger S., Aymanns R., Graf M., Stapf G. (2007) Analysis of Cyclic Fluctuations of Charge Motion and Mixture Formation in a DISI Engine in Stratified Operation, SAE Technical Paper 2007-01-1412, doi: 10.4271/2007-01-1412. [Google Scholar]
  • Vermorel O., Richard S., Colin O., Angelberger C., Benkenida A., Veynante D. (2009) Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES, Combust. Flame 156, 8, 1525-1541. [CrossRef] [Google Scholar]
  • Granet V., Vermorel O., Lacour C., Enaux B., Dugué V., Poinsot T. Large-Eddy Simulation and experimental study of cycle-to-cycle variations of stable and unstable operating points in a spark ignition engine, Combust. Flame 159, 4, 1562-1575. [CrossRef] [Google Scholar]
  • Celik I., Yavuz I., Smirnov A., Smith J., Amin E., Gel A. (2000) Prediction of in-cylinder turbulence for IC engines, Combust. Sci. Technol. 153, 1, 339-368. [CrossRef] [Google Scholar]
  • Devesa A., Moreau J., Poinsot T., Helie J. (2004) Large Eddy Simulations of Jet/Tumble Interaction in a GDI Model Engine Flow, SAE Technical Paper 2004-01-1997, doi: 10.4271/2004-01-1997. [Google Scholar]
  • Keskinen J., Vuorinen V., Kaario O., Larmi M. (2012) Large Eddy Simulation of the Intake Flow in a Realistic Single Cylinder Configuration, SAE Technical Paper 2012-01-0137, doi: 10.4271/2012-01-0137. [Google Scholar]
  • Liu K., Haworth D.C. (2010) Large-eddy simulation for an axisymmetric piston-cylinder assembly with and without swirl, Flow Turbul. Combust. 85, 279-307. [CrossRef] [Google Scholar]
  • Goryntsev D., Sadiki A., Klein M., Janicka J. (2008) Large eddy simulation based analysis of the effects of cycle-tocycle variations on air—fuel mixing in realistic DISI IC- engines, Proc. Combust. Inst. 32, 2, 2759-2766. [CrossRef] [Google Scholar]
  • Enaux B., Granet V., Vermorel O., Lacour C., Thobois L., Dugue V., Poinsot T. (2010) Large Eddy Simulation of a motored single-cylinder piston engine: numerical strategies and validation, Flow Turbul. Combust. 86, 2, 153-177. [CrossRef] [Google Scholar]
  • Rezaei R., Pischinger S., Adomeit P., Ewald J. (2012) Numerical investigation of the effect of swirl flow in-homogeneity and stability on Diesel engine combustion and emissions, Int. J. Engine Res. 13, 5, 482-496. [CrossRef] [Google Scholar]
  • Vitek O., Macek J., Tatschl R., Pavlovic Z., Priesching P. (2012) LES Simulation of Direct Injection SI-Engine In- Cylinder Flow, SAE Technical Paper 2012-01-0138, doi: 10.4271/2012-01-0138. [Google Scholar]
  • Hu B., Jhavar R., Singh S., Reitz R.D., Rutland C.J. (2007) Combustion modeling of Diesel combustion with partially premixed condition, SAE Technical Paper 2007-01-0163, doi: 10.4271/2007-01-0163. [Google Scholar]
  • Arai J., Oshima N., Oshima M., Ito H., Kubota M. (2007) Large Eddy Simulation of Spray Injection to Turbulent Flows from a Slit Nozzle, J. Fluid Sci. Technol. 2, 3, 601-610. [CrossRef] [Google Scholar]
  • Smagorinsky J. (1963) General circulation experiments with the primitive equations, Mon. Wea. Rev. 91, 99-164. [NASA ADS] [CrossRef] [Google Scholar]
  • Bird R.B., Stewart E.W., Lightfoot E.N. (1960) Transport Phenomena, John Wiley & Sons, New York. [Google Scholar]
  • El Wakil M.M., Ueyhara O.A., Myers P.S. (1954) A theoretical investigation of the heating-up period of injected fuel droplets vaporizing in air, NACA Technical Note 3179. [Google Scholar]
  • Ranz W.E., Marshall W.R. (1952) Evaporation from drops — Parts I and II, Chem. Eng. Prog. 48, 3, 141-146; 173-180. [Google Scholar]
  • Reitz R., Diwakar R. (1986) Effect of Drop Breakup on Fuel Sprays, SAE Technical Paper 860469, SAE Trans. 95, 3, 218-227. [Google Scholar]
  • Bai C., Gosman A.D. (1995) Development of Methodology for Spray Impingement Simulation, SAE Technical Paper 950283, doi: 10.4271/950283. [Google Scholar]
  • Colin O., Benkenida A. (2004) The 3-Zone Extended Coherent Flame Model (ECFM3Z) for computing premixed/diffusion combustion, Oil Gas Sci. Technol. — Rev. IFP 59, 6, 593-609. [CrossRef] [EDP Sciences] [Google Scholar]
  • Duclos J.M., Bruneaux G., Baritaud A. (1996) 3D modelling of combustion and pollutants in a 4-valve SI engine; effect of fuel and residuals distribution and spark location, SAE Technical Paper 961964, doi: 10.4271/961964. [Google Scholar]
  • Richard S., Colin O., Vermorel O., Benkenida A., Angelberger C., Veynante D. (2007) Towards large eddy simulaiton of combustion in spark ignition engines, Proc. Combust. Inst. 31, 3059-3066. [CrossRef] [MathSciNet] [Google Scholar]
  • Colin O., Ducros F., Veynante D., Poinsot T. (2000) A thickened flame model for large eddy simulations of turbulent premixed combustion, Phys. Fluids 12, 7, 1843-1863. [CrossRef] [Google Scholar]
  • Dugué V. (2007) Étude du potentiel des simulations aux grandes échelles pour la prédiction des variations cycliques dans les moteurs automobiles, Doctorate Thesis, École centrale de Paris, Châtenay-Malabry, France. [Google Scholar]
  • Angelberger C., Poinsot T., Delhay B. (1997) Improving Near-Wall Combustion and Wall Heat Transfer Modeling in SI Engine Computations, SAE Paper 972881, doi: 10.4271/972881. [Google Scholar]
  • Fontanesi S., Paltrinieri S., Tiberi A., D’Adamo A. (2013) LES multi-cycle analysis of a high performance GDI engine, SAE Technical Paper 2013-01-1080, doi: 10.4271/2013-01-1080. [Google Scholar]
  • Matekunas F.A. (1983) Modes and Measures of Cyclic Combustion Variability, SAE Technical Paper 830337, doi: 10.4271/830337. [Google Scholar]
  • Pera C., Richard S., Angelberger C. (2012) Exploitation of Multi-Cycle Engine LES to Introduce Physical Perturbations in 1D Engine Models for Reproducing CCV, SAE Technical Paper 2012-01-0127, doi: 10.4271/2012-01-0127. [Google Scholar]
  • Fontanesi S., Paltrinieri S., D’Adamo A., Cantore G., Rutland C. (2013) Knock Tendency Prediction in a High Performance Engine Using LES and Tabulated Chemistry, SAE Technical Paper 2013-01-1082. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.