IFP Energies nouvelles International Conference: LES4ICE 2012 - Large Eddy Simulation for Internal Combustion Engine Flows
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Numéro 1, January-February 2014
IFP Energies nouvelles International Conference: LES4ICE 2012 - Large Eddy Simulation for Internal Combustion Engine Flows
Page(s) 11 - 27
DOI https://doi.org/10.2516/ogst/2013143
Publié en ligne 13 novembre 2013
  • Ferziger J.H., Perie M. (1997) Computational Methods for Fluid Dynamics, Springer. [Google Scholar]
  • Versteeg H.K., Malalasekera W. (1995) An Introduction to Computational Fluid Dynamics, Longman Scientific and Technical. [Google Scholar]
  • Thobois L., Rymer G., Soulères T., Poinsot T. (2004) Large-eddy simulation in IC engine geometries, SAE Paper 2004-01-1854, SAE Fuels and Lubricants Meeting and Exhibition, Toulouse, France, 8 June. [Google Scholar]
  • Thobois L., Rymer G., Soulères T., Poinsot T., Van Den Heuvel B. (2005) Large-eddy simulation for the prediction of aerodynamics in IC engines, Mt. J. Vehicle Design. 39, 368-382. [CrossRef] [Google Scholar]
  • Brusiani F., Bianchi G.M. (2008) LES simulation of ice nonreactive flows in fixed grids, SAE Paper 2008-01-0959. [Google Scholar]
  • Brusiani F., Pelloni P., Cazzoil G. (2008) Definition of a LES numerical methodology for the simulation of engine flows on fixed grids, ASME Paper ICES2008-1658. [Google Scholar]
  • Moureau V., Barton I., Angelberger C., Poinsot T. (2004) Towards large eddy simulation in internal-combustion engines: Simulation of a compressed tumble flow, SAE Paper 2004-01-1995. [Google Scholar]
  • Fogleman M., Lumley J., Rempfer D., Haworth D. (2004) Application of the proper orthogonal decomposition to datasets of internal combustion engine flows, J. Turbulence N23, doi: 10.1088/1468-5248/5/1/023. [Google Scholar]
  • Haworth D.C., Jansen K. (2000) Large-eddy simulation on unstructured deforming meshes: towards reciprocating IC engines, Comput. Fluids 29, 5, 493-524. ISSN 0045-7930. doi: 10.1016/S0045-7930 (99)00015-8. [Google Scholar]
  • Haworth D.C. (1999) Large-eddy simulation of in-cylinder flows, Oil Gas Sci. Technol.-Rev. IFP 54, 2, 175-185. doi: 10.2516/ogst:1999012. [Google Scholar]
  • Laget O., Reveille B., Martinez L., Truffin K., Habchi C., Angelberger C. (2011) LES calculations of a four cylinder engine, SAE Paper 2011-01-0832. [Google Scholar]
  • Richard S., Colin O., Vermorel O., Benkenida A., Angelberger C., Veynante D. (2007) Towards large eddy simulation of combustion in spark ignition engines, Proc. Combust. Inst. 31, 2, 3059-3066. ISSN 1540-7489. doi: 10.1016/j.proci.2006.07.086. [CrossRef] [MathSciNet] [Google Scholar]
  • Thobois L., Lauvergne T., Poinsot T. (2007) Using LES to investigate reacting flow physics in engine design process, SAE Paper 2007-01-0166. [Google Scholar]
  • Vermorel O., Richard S., Colin O., Angelberger C., Benkenida A., Veynante D. (2009) Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES, Combust. Flame 156, 8, 1525-1541. ISSN 0010-2180. doi: 10.1016/j.combustflame.2009.04.007. [CrossRef] [Google Scholar]
  • Sagaut P. (2006) Large eddy simulation for incompressible flows: an introduction, Scientific computation, SpringerVerlag. ISBN 9783540263449. [Google Scholar]
  • OpenCFD (2004) Open FOAM Programmer’s Guide, OpenCFD Ltd. [Google Scholar]
  • Germano M., Piomelli U., Moin P., Cabot W.H. (1991) A dynamic subgrid-scale eddy viscosity model, Phys. fluids A 3, 1760. doi: 10.1063/1.857955. [Google Scholar]
  • Nicoud F., Ducros F. (1999) Subgrid-scale stress modelling based on the square of the velocity gradient tensor, Flow. Turbul. Combust. 62, 183-200. doi: 10.1023/A: 1009995426001. [Google Scholar]
  • Eaton J., Johnston J., Westphal R. (1986) Experimental study of flow reattachment in a single-sided sudden expansion, Contractor report 3765, NASA Ames Research Center. [Google Scholar]
  • Brusiani F., Forte C., Bianchi G.M. (2007) Assessment of a numerical methodology for large eddy simulation of ice wall bounded non-reactive flows, SAE Paper 2007-01-41451. [Google Scholar]
  • Montorfano A., Piscaglia F., Ferrari G. (2011) Inlet boundary conditions for incompressible LES: A comparative study, Math. Comput. Model. 57, 7-8, 1640-1647. ISSN 0895-7177. doi: 10.1016/j.mcm.2011.10.077. [Google Scholar]
  • Piscaglia F., Montorfano A., Onorati A. (2011) Development of NSCBC for compressible navier-stokes equations in openfoam, Sixth OpenFOAM Workshop, Penn State, June 12-16. [Google Scholar]
  • Piscaglia F., Montorfano A., Onorati A. (2012) Improving the simulation of the acoustic performance of complex silencers for ice by a multi-dimensional non-linear approach, SAE Int. J. Eng. 2, 5, 633-648. [Google Scholar]
  • Piscaglia F., Montorfano A., Onorati A. (2013) Development of a non-reflecting boundary condition for multidimensional nonlinear duct acoustic computation, J. Sound Vibration 332, 4, 922-935. ISSN 0022-460X. doi: 10.1016/j.jsv.2012.09.030. [CrossRef] [Google Scholar]
  • Tabor G.R., Baba-Ahmadi M.H. (2010) Inlet conditions for large eddy simulation: A review, Comput. Fluids 39, 4, 553-567. [CrossRef] [MathSciNet] [Google Scholar]
  • Davidson L. (2007) Using isotropic synthetic fluctuations as inlet boundary conditions for unsteady simulations, Adv. Appl. Fluid Mech. 1, 1, 1-35. [MathSciNet] [Google Scholar]
  • Billson M. (2004) Computational Techniques for Turbulence Generated Noise, PhD thesis, Chalmers University of Technology, Goteborg, Sweden. [Google Scholar]
  • Pope S.B. (2001) Turbulent Flows, Cambridge University Press. [Google Scholar]
  • Brusiani F., Bianchi G.M., Baritaud T., Bianchi d’Espinosa A. (2009) Using LES for predicting high performance car airbox flow, SAE Int. J. Passeng. Cars-Mech. Syst. 2, 1, 1050-1064. [Google Scholar]
  • Hirsch C. (2007) Numerical Computation of Internal and External Flows, Kindle Edition. [Google Scholar]
  • Jasak H. (1996) Error analysis and estimation in the Finite Volume method with applications to fluid flows, PhD thesis, Imperial College, University of London. [Google Scholar]
  • Akselvoll K., Moin P. (1995) Large eddy simulation of turbulent confined coanular jets and flow over a backward- facing step. Rept. TF-63, Thermosciences Division, Department of Mechanical Engineering. [Google Scholar]
  • Davidson L. (2009) Large eddy simulations: How to evaluate resolution, Mt. J. Heat Fluid Flow 30, 5, 1016-1025. [Google Scholar]
  • Spalding D.B. (1961) A single formula for the law of the wall. J. Appl. Mech. Trans. ASME Series E 28, 455-458. [CrossRef] [Google Scholar]
  • Fureby C., Tabor G., Weller H.G., Gosman A.D. (1997) A comparative study of subgrid scale models in homogeneous isotropic turbulence, Phys. fluids 9, 1416-1429. doi: 10.1063/1.869254. [CrossRef] [MathSciNet] [Google Scholar]
  • Greenshields C.J., Weller H.G., Gasparini L., Reese J.M. Implementation of semi-discrete, nonstaggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows, Int. J. Numer. Meth. Fluids 63, 1. ISSN 1097-0363. [Google Scholar]
  • Juretic F., Gosman A.D. (2010) Error analysis of the finitevolume method with respect to mesh type, Numer. Heat Trans. Part B: Fund. 57, 414-439. [CrossRef] [Google Scholar]
  • Wollblad C., Davidson L., Eriksson L.-E. (2006) Large eddy simulation of transonic flow with shock wave/turbulent boundary layer interaction, AIAA J. 44, 2340-2353. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.