- Abu-Zahra M., Schneiders L.H.J., Niederer J.P.M., Feron P.H.M., Versteeg. G.F. (2007) CO2 capture from power plants. Part I. A parametric study of the technical performance based on monoethanolamine, Int. J. Greenhouse Gas Control 1, 37-46. [CrossRef] [Google Scholar]
- Alix P., Raynal L. (2009) Pressure Drop and Mass Transfer of a High Capacity Random Packing. Application to CO2 Postcombustion Capture, Energy Procedia 1, 845-852. [CrossRef] [Google Scholar]
- Alix P., Raynal L., Abbe F., Meyer M., Prevost M., Rouzineau D. (2011) Mass transfer and hydrodynamic characteristics of new carbon carbon packing: Application to CO2 post-combustion capture, Chem. Eng. Res. Des. 89, 1658-1668. [CrossRef] [Google Scholar]
- Ataki A., Bart H.J. (2006) Experimental and CFD simulation study for the wetting of a structured packing element with liquids, Chem. Eng. Technol. 29, 3, 336-347. [CrossRef] [Google Scholar]
- Berner G.G., Zuiderweg F.J. (1978) Radial liquid spread and maldistribution in packed columns under different wetting conditions, Chem. Eng. Sci. 33, 1637-1643. [CrossRef] [Google Scholar]
- Billet R. (1995) Packed Towers, VCH Eds., Weinheim. [Google Scholar]
- Blazek J. (2001) Computational Fluid Dynamics: Principles and applications, Elsevier Ed. [Google Scholar]
- Danckwerts P.V. (1970) Gas-Liquid Reactions, McGraw-Hill, New-York. [Google Scholar]
- Darde V., Thomsen K., van Well W.J.M., Stenby E.H. (2010) Chilled ammonia process for CO2 capture, Int. J. Greenhouse Gas Control 4, 131-136. [CrossRef] [Google Scholar]
- Dugas R., Alix P., Lemaire E., Broutin P., Rochelle G. (2009) Absorber model for CO2 capture by monoethanolamine — application to CASTOR pilot results, Energy Procedia 1, 103-107. [CrossRef] [Google Scholar]
- Duss M., Menon A. (2010) Optimized Absorber Design for Post-Combustion CCS, Proc. of the Distillation and Absorption 2010 Conference, 12-15 Sept., Eidhoven, The Netherlands, pp. 109-114. [Google Scholar]
- Fourati M., Roig V., Raynal L. (2012) Experimental study of liquid spreading in structured packings, Chem. Eng. Sci. 80, 1-15. [CrossRef] [Google Scholar]
- Haroun Y., Legendre D., Raynal L. (2010a) Direct Numerical Simulation of Reactive Absorption in Gas-Liquid Flow on Structured Packing using Interface Capturing Method, Chem. Eng. Sci. 65, 1, 351-356. [CrossRef] [Google Scholar]
- Haroun Y., Legendre D., Raynal L. (2010b) Volume of fluid method for interfacial reactive mass transfer: Application to stable liquid film, Chem. Eng. Sci. 65, 10, 2896-2909. [CrossRef] [Google Scholar]
- Haroun Y., Raynal L., Legendre D. (2012) Mass transfer and liquid hold-up determination in structured packing by CFD, Chem. Eng. Sci. 75, 342-348. [CrossRef] [Google Scholar]
- Higbie R. (1935) The rate of absorption of a pure gas into a still liquid during short periods of exposure. Trans. A.I.Ch.E., 35, 365-389. [Google Scholar]
- Hoek P.J., Wesselingh J.A., Zuiderweg F.J. (1986) Small scale and large scale liquid maldistribution in packed columns, Chem. Eng. Res. Des. 64, 431-449. [Google Scholar]
- International Energy Agency (2009) Technology Roadmap, CCS, Available at: http://www.iea.org/papers/2009/CCS_Roadmap.pdf. [Google Scholar]
- Knudsen J.N. (2009) Pilot-scale testing in Cesar, European Conference on CCS research, 10-11 Feb., Oslo, Norway. [Google Scholar]
- Knudsen J.N., Jensen J.N., Vilhelmsen P.-J., Biede O. (2009) Experience with CO2 capture from coal flue gas in pilot-scale: testing of different amine solvents, Energy Procedia 1, 783-790. [CrossRef] [Google Scholar]
- Koch-Glitsch (2003) Intalox packed tower systems, Bulletin KGIMTP-1, Koch-Glitsch. [Google Scholar]
- Kohrt M., Ausner I., Wozny G., Repke J.-U. (2011) Texture influence on liquid-side mass transfer, Chem. Eng. Res. Desi. 89, 1405-1413. [CrossRef] [Google Scholar]
- Lemaire E., Bouillon P.A., Gomez A., Kittel J., Gonzalez S., Carrette P.L., Delfort B., Mougin P., Alix P., Normand L. (2011) New IFP optimized first generation process for postcombustion carbon capture: Hicapt + TM, Energy Procedia 4, 1361-1368. [Google Scholar]
- Ma’mum S., Svendsen H.F., Hoff K.A., Juliussen O. (2007) Selection of new absorbents for carbon dioxide capture, Energy Convers. Manage. 48, 251-258. [CrossRef] [Google Scholar]
- Mathias P.M., Reddy S., Connell J.P. (2010) Quantitative evaluation of the chilled-ammonia process for CO2 capture using thermodynamic analysis and process simulation, Int. J. Greenhouse Gas Control 4, 174-179. [CrossRef] [Google Scholar]
- Menon A., Duss M. (2011) Sulzer – reducing the energy penalty for post-combustion CO2 capture, Carbon Capture J. Sept.-Oct., 2-5. [Google Scholar]
- Menon A., Duss M., Bachmann C. (2009) Post-combustion capture of CO2, PTQ 2, 115-121. [Google Scholar]
- Nakov S.V., Kolev N., Ljutzkanov L., Kolev D. (2007) Comparison of the effective area of some highly effective packings, Chem. Eng. Process. 46, 1385-1390. [Google Scholar]
- Nicoud F., Ducros F. (1999) Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor, Flow Turbulence Combust. 62, 3, 183-200. [Google Scholar]
- Olujic Z., van Baak R., Haaring J. (2006) Liquid distribution behaviour of conventional and high capacity structured packings, Distillation and Absorption, IChemE Symp. Series n° 152, 252-266. [Google Scholar]
- Petre C.F., Larachi F., Illiuta I., Grandjean B.P.A. (2003) Pressure drop through structured packings: breakdown into the contributing mechanisms by CFD modeling, Chem. Eng. Sci. 58, 163-177. [CrossRef] [Google Scholar]
- Piomelli U. (1998) Large-Eddy Simulation: Present State and Future Perspectives, AIAA Paper 98-0534. [Google Scholar]
- Porcheron F., Gibert A., Jacquin M., Mougin P., Faraj A., Goulon A., Bouillon P.-A., Delfort B., Le Pennec D., Raynal L. (2011) High Throughput Screening of amine thermodynamic properties applied to post-combustion CO2 capture process evaluation, Energy Procedia 4, 15-22. [CrossRef] [Google Scholar]
- Puxty G., Rowland R., Allport A., Yang Q., Bown M., Burns R., Madder M., Attala M. (2009) Carbon Dioxide Postcombustion Capture: A Novel Screening Study of the Carbon Dioxide Absorption Performance of 76 Amines, Environ. Sci. Technol. 43, 6427-6433. [Google Scholar]
- Raynal L., Royon-Lebeaud A. (2007) A multi-scale approach for CFD calculations of gas-liquid flow within large size column equipped with structured packing, Chem. Eng. Sci. 62, 7196-7204. [CrossRef] [Google Scholar]
- Raynal L., Boyer C., Ballaguet J.-P. (2004) Liquid holdup and pressure drop determination in structured packing with CFD simulations, Can. J. Chem. Eng. 82, 871-879. [CrossRef] [Google Scholar]
- Raynal L., Bouillon P.A., Gomez A., Broutin P. (2011) From MEA to demixing solvents and future steps, a roadmap for lowering the cost of post-combustion carbon capture, Chem. Eng. J. 171, 742-752. [CrossRef] [Google Scholar]
- Repke J.-U., Hoffmann A., Ausner I., Villain O, Wozny G. (2006) On the track to understanding three phases in one tower, Distillation and Absorption, IChemE Symp. Series n° 152, 190-199. [Google Scholar]
- Rocha J.A., Bravo J.L., Fair J.R. (1996) Distillation columns containing structured packings: A comprehensive model for their performance. 2. Mass-transfer model, Ind. Eng. Chem. Res. 35, 1660-1667. [CrossRef] [Google Scholar]
- Scardovelli R., Zaleski S. (1999) Direct numerical simulation of free-surface and interfacial flow, Annu. Rev. Fluid Mech. 31, 567-603. [CrossRef] [Google Scholar]
- Seibert F., Wilson I., Lewis C., Rochelle G. (2005) Effective Gas/Liquid Contact Area of Packing for CO2 absorption/stripping, Greenhouse Gas Control Technol. 2, 1925-1928. [CrossRef] [Google Scholar]
- Spiegel L., Meier W. (1992) A generalized pressure drop model for structured packings, Distillation and Absorption, IChemE Symp. Series n° 128, B85-B94. [Google Scholar]
- Tobiesen F.A., Svendsen H., Juliussen O. (2007) Experimental validation of a rigorous absorber model for CO2 postcombustion capture, AIChE J. 53, 846-865. [CrossRef] [Google Scholar]
Open Access
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 6, November-December 2013
IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
|
|
---|---|---|
Page(s) | 1093 - 1108 | |
DOI | https://doi.org/10.2516/ogst/2012104 | |
Published online | 12 September 2013 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.