IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 6, November-December 2013
IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
Page(s) 1027 - 1038
DOI https://doi.org/10.2516/ogst/2013135
Published online 13 November 2013
  • Boduszynski M.M. (1987) Composition of heavy petroleums. 1. Molecular weight, hydrogen deficiency, and heteroatom concentration as a function of atmospheric equivalent boiling point up to 1400.degree.F (760.degree. C), Energy Fuels 1, 2-11. [CrossRef] [Google Scholar]
  • Neurock M., Libanati C., Nigam A., Klein M.T. (1990) Monte Carlo simulation of complex reaction systems: molecular structure and reactivity in modelling heavy oils, Chem. Eng. Sci. 45, 2083-2088. [CrossRef] [Google Scholar]
  • Quann R.J., Jaffe S.B. (1992) Structure-oriented lumping: describing the chemistry of complex hydrocarbon mixtures, Ind. Eng. Chem. Res. 31, 2483-2497. [CrossRef] [Google Scholar]
  • Jaffe S.B., Freund H., Olmstead W.N. (2005) Extension of Structure-Oriented Lumping to Vacuum Residua, Ind. Eng. Chem. Res. 44, 9840-9852. [CrossRef] [Google Scholar]
  • Liguras D.K., Allen D.T. (1989) Structural models for catalytic cracking. 1. Model compound reactions, Ind. Eng. Chem. Res. 28, 665-673. [CrossRef] [Google Scholar]
  • Martens G.G., Marin G.B. (2001) Kinetics for hydrocracking based on structural classes: Model development and application, AIChE J. 47, 1607-1622. [CrossRef] [Google Scholar]
  • Lopez-Garcia C., Hudebine D., Schweitzer J.-M., Verstraete J.J., Ferré D. (2010) In-depth modeling of gas oil hydrotreating: From feedstock reconstruction to reactor stability analysis, Catal. Today 150, 279-299. [CrossRef] [Google Scholar]
  • Charon-Revellin N., Dulot H., Lopez-Garcia C., Jose J. (2011) Kinetic Modeling of Vacuum Gas Oil Hydrotreatment using a Molecular Reconstruction Approach, Oil Gas Sci. Technol. — Revue d’IFP Energies nouvelles 66, 479-490. [CrossRef] [EDP Sciences] [Google Scholar]
  • Martens G.G., Marin G.B., Martens J.A., Jacobs P.A., Baron G.V. (2000) A Fundamental Kinetic Model for Hydrocracking of C$ to C12 Alkanes on Pt/US—Y Zeolites, J. Catal. 195, 253-267. [CrossRef] [Google Scholar]
  • Valéry E., Guillaume D., Surla K., Galtier P., Verstraete J. J., Schweich D. (2007) Kinetic Modeling of Acid Catalyzed Hydrocracking of Heavy Molecules: Application to Squalane, Ind. Eng. Chem. Res. 46, 4755-4763. [CrossRef] [Google Scholar]
  • Guillaume D., Valéry E., Verstraete J.J., Surla K., Galtier P., Schweich D. (2011) Single Event Kinetic Modelling without Explicit Generation of Large Networks: Application to Hydrocracking of Long Paraffins, Oil Gas Sci. Technol. — Revue d’IFP Energies nouvelles. 66, 399-422. [CrossRef] [EDP Sciences] [Google Scholar]
  • Mitsios M., Guillaume D., Galtier P., Schweich D. (2009) Single-Event Microkinetic Model for Long-Chain Paraffin Hydrocracking and Hydroisomerization on an Amorphous Pt/SiO2 Al2O3 Catalyst, Ind. Eng. Chem. Res. 48, 3284-3292. [CrossRef] [Google Scholar]
  • Shahrouzi J.R., Guillaume D., Rouchon P., Da Costa P. (2008) Stochastic Simulation and Single Events Kinetic Modeling: Application to Olefin Oligomerization, Ind. Eng. Chem. Res. 47, 4308-4316. [CrossRef] [Google Scholar]
  • Lozano-Blanco G., Thybaut J.W., Surla K., Galtier P., Marin G.B. (2008) Single-Event Microkinetic Model for Fischer—Tropsch Synthesis on Iron-Based Catalysts, Ind. Eng. Chem. Res. 47, 5879-5891. [CrossRef] [Google Scholar]
  • Lozano-Blanco G., Surla K., Thybaut J.W., Marin G.B. (2011) Extension of the Single-Event Methodology to Metal Catalysis: Application to Fischer-Tropsch Synthesis, Oil Gas Sci. Technol. — Revue d’IFP Energies nouvelles. 66, 423-435. [CrossRef] [EDP Sciences] [Google Scholar]
  • Cochegrue H., Gauthier P., Verstraete J.J., Surla K., Guillaume D., Galtier P., et al. (2011) Reduction of Single Event Kinetic Models by Rigorous Relumping: Application to Catalytic Reforming, Oil Gas Sci. Technol. — Revue d’IFP Energies nouvelles. 66, 367-397. [CrossRef] [EDP Sciences] [Google Scholar]
  • Broadbelt L.J., Stark S.M., Klein M.T. (1994) Computer Generated Pyrolysis Modeling: On-the-Fly Generation of Species, Reactions, and Rates, Ind Eng. Chem. Res. 33, 790-799. [CrossRef] [Google Scholar]
  • De Witt M.J., Dooling D.J., Broadbelt L.J. (2000) Computer Generation of Reaction Mechanisms Using Quantitative Rate Information: Application to Long-Chain Hydrocarbon Pyrolysis, Ind. Eng. Chem. Res. 39, 2228-2237. [CrossRef] [Google Scholar]
  • Liguras D.K., Neurock M., Klein M.T., Stark S.M., Libanati C., Nigam A., et al. (1992) Monte Carlo simulation of complex reactive mixture: An FCC case study, AIChE Symposium Series 88, 68-75. [Google Scholar]
  • Merdrignac I., Espinat D. (2007) Physicochemical Characterization of Petroleum Fractions: the State of the Art, Oil Gas Sci. Technol. — Revue d’IFP Energies nouvelles. 62, 7-32. [CrossRef] [EDP Sciences] [Google Scholar]
  • Hudebine D., Verstraete J.J. (2004) Molecular reconstruction of LCO gasoils from overall petroleum analyses, Chem. Eng. Sci. 59, 4755-4763. [CrossRef] [Google Scholar]
  • Verstraete J.J., Revellin N., Dulot H. (2004) Molecular reconstruction of vacuum gasoils, Preprints of Papers — Am. Chem. Soc. Division Fuel Chem. 49, 20-21. [Google Scholar]
  • Verstraete J.J., Schnongs P., Dulot H., Hudebine D. (2010) Molecular reconstruction of heavy petroleum residue fractions, Chem. Eng. Sci. 65, 304-312. [CrossRef] [Google Scholar]
  • de Oliveira L.P., Trujillo Vazquez A., Verstraete J.J., Kolb M. (2013) Molecular reconstruction of petroleum fractions: Application to various vacuum residues, Energy Fuels 27, 3622-3641. [CrossRef] [Google Scholar]
  • Hudebine D., Verstraete J.J., Chapus T. (2011) Statistical Reconstruction of Gas Oil Cuts, Oil Gas Sci. Technol. —. Revue d’IFP Energies nouvelles 66, 461-477. [CrossRef] [EDP Sciences] [Google Scholar]
  • Neurock M., Nigam A., Trauth D.M., Klein M.T. (1994) Molecular representation of complex hydrocarbon feedstocks through efficient characterization and stochastic algorithms, Chem. Eng. Sci. 49, 4153-4177. [CrossRef] [Google Scholar]
  • Trauth D.M., Stark S.M., Petti T.F., Neurock M., Klein M.T. (1994) Representation of the Molecular Structure of Petroleum Resid through Characterization and Monte Carlo Modeling, Energy Fuels 8, 576-580. [CrossRef] [Google Scholar]
  • Hudebine D., Verstraete J.J. (2011) Reconstruction of Petroleum Feedstocks by Entropy Maximization. Application to FCC Gasolines, Oil Gas Sci. Technol. — Revue d’IFP Energies nouvelles 66, 437-460. [CrossRef] [EDP Sciences] [Google Scholar]
  • Van Geem K.M., Hudebine D., Reyniers M.-F., Wahl F., Verstraete J.J., Marin G.B. (2007) Molecular reconstruction of naphtha steam cracking feedstocks based on commercial indices, Comput. Chem. Eng. 31, 1020-1034. [CrossRef] [Google Scholar]
  • Van Geem K.M., Reyniers M.-F., Marin G.B. (2008) Challenges of Modeling Steam Cracking of Heavy Feedstocks, Oil Gas Sci. Technol. — Revue d’IFP Energies nouvelles 63, 79-94. [CrossRef] [EDP Sciences] [Google Scholar]
  • Shannon C.E. (1948) A mathematical theory of communication, Bell Syst. Tech. J. 27, 379-423, 623-656. [CrossRef] [MathSciNet] [Google Scholar]
  • Boduszynski M.M. (1988) Composition of heavy petroleums. 2, Molecular characterization, Energy Fuels 2, 597-613. [CrossRef] [Google Scholar]
  • McKenna A.M., Blakney G.T., Xian F., Glaser P.B., Rodgers R.P., Marshall A.G. (2010) Heavy Petroleum Composition. 2. Progression of the Boduszynski Model to the Limit of Distillation by Ultrahigh-Resolution FTICR Mass Spectrometry, Energy Fuels 24, 2939-2946. [CrossRef] [Google Scholar]
  • Sheu E.Y. (2002) Petroleum AsphalteneProperties, Characterization, and Issues, Energy Fuels 16, 74-82. [CrossRef] [Google Scholar]
  • Wiehe I.A. (1994) The Pendant-Core Building Block Model of Petroleum Residua, Energy Fuels 8, 536-544. [CrossRef] [Google Scholar]
  • API 2B2.I (1987) API procedure 2B2.1 for estimating the molecular weight of a petroleum fraction, API Technical Handbook. [Google Scholar]
  • Gillespie D.T. (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys. 22, 403-434. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Gillespie D.T. (2007) Stochastic simulation of chemical kinetics, Annu. Rev. Phys. Chem. 58, 35-55. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Gillespie D.T. (1992) A rigorous derivation of the chemical master equation, Physica A: Statistical Mechanics and Its Applications 188, 404-425. [NASA ADS] [CrossRef] [Google Scholar]
  • Schweitzer J.-M., Kressmann S. (2004) Ebullated bed reactor modeling for residue conversion, Chem. Eng. Sci. 59, 5637-5645. [CrossRef] [Google Scholar]
  • Pereira de Oliveira L., Verstraete J.J., Kolb M. (2012) A Monte Carlo modeling methodology for the simulation of hydrotreating processes, Chem. Eng. J. 207-208, 94-102. [CrossRef] [Google Scholar]
  • de Oliveira L.P., Verstraete J.J., Kolb M. (2013) Molecule- based kinetic modeling by Monte Carlo methods for heavy petroleum conversion, Science China Chemistry, DOI: 10.1007/s11426-013-4989-3 (in press). [Google Scholar]
  • de Oliveira L.P., Verstraete J.J., Kolb M. (2013) Simulating vacuum residue hydroconversion by means of Monte- Carlo techniques, Catalysis Today, DOI: 10.1016/j.cattod. 2013.08.011 (in press). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.