IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 6, November-December 2013
IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
Page(s) 1027 - 1038
DOI https://doi.org/10.2516/ogst/2013135
Published online 13 November 2013
  • Boduszynski M.M. (1987) Composition of heavy petroleums. 1. Molecular weight, hydrogen deficiency, and heteroatom concentration as a function of atmospheric equivalent boiling point up to 1400.degree.F (760.degree. C), Energy Fuels 1, 2-11. [CrossRef]
  • Neurock M., Libanati C., Nigam A., Klein M.T. (1990) Monte Carlo simulation of complex reaction systems: molecular structure and reactivity in modelling heavy oils, Chem. Eng. Sci. 45, 2083-2088. [CrossRef]
  • Quann R.J., Jaffe S.B. (1992) Structure-oriented lumping: describing the chemistry of complex hydrocarbon mixtures, Ind. Eng. Chem. Res. 31, 2483-2497. [CrossRef]
  • Jaffe S.B., Freund H., Olmstead W.N. (2005) Extension of Structure-Oriented Lumping to Vacuum Residua, Ind. Eng. Chem. Res. 44, 9840-9852. [CrossRef]
  • Liguras D.K., Allen D.T. (1989) Structural models for catalytic cracking. 1. Model compound reactions, Ind. Eng. Chem. Res. 28, 665-673. [CrossRef]
  • Martens G.G., Marin G.B. (2001) Kinetics for hydrocracking based on structural classes: Model development and application, AIChE J. 47, 1607-1622. [CrossRef]
  • Lopez-Garcia C., Hudebine D., Schweitzer J.-M., Verstraete J.J., Ferré D. (2010) In-depth modeling of gas oil hydrotreating: From feedstock reconstruction to reactor stability analysis, Catal. Today 150, 279-299. [CrossRef]
  • Charon-Revellin N., Dulot H., Lopez-Garcia C., Jose J. (2011) Kinetic Modeling of Vacuum Gas Oil Hydrotreatment using a Molecular Reconstruction Approach, Oil Gas Sci. Technol. — Revue d’IFP Energies nouvelles 66, 479-490. [CrossRef] [EDP Sciences]
  • Martens G.G., Marin G.B., Martens J.A., Jacobs P.A., Baron G.V. (2000) A Fundamental Kinetic Model for Hydrocracking of C$ to C12 Alkanes on Pt/US—Y Zeolites, J. Catal. 195, 253-267. [CrossRef]
  • Valéry E., Guillaume D., Surla K., Galtier P., Verstraete J. J., Schweich D. (2007) Kinetic Modeling of Acid Catalyzed Hydrocracking of Heavy Molecules: Application to Squalane, Ind. Eng. Chem. Res. 46, 4755-4763. [CrossRef]
  • Guillaume D., Valéry E., Verstraete J.J., Surla K., Galtier P., Schweich D. (2011) Single Event Kinetic Modelling without Explicit Generation of Large Networks: Application to Hydrocracking of Long Paraffins, Oil Gas Sci. Technol. — Revue d’IFP Energies nouvelles. 66, 399-422. [CrossRef] [EDP Sciences]
  • Mitsios M., Guillaume D., Galtier P., Schweich D. (2009) Single-Event Microkinetic Model for Long-Chain Paraffin Hydrocracking and Hydroisomerization on an Amorphous Pt/SiO2 Al2O3 Catalyst, Ind. Eng. Chem. Res. 48, 3284-3292. [CrossRef]
  • Shahrouzi J.R., Guillaume D., Rouchon P., Da Costa P. (2008) Stochastic Simulation and Single Events Kinetic Modeling: Application to Olefin Oligomerization, Ind. Eng. Chem. Res. 47, 4308-4316. [CrossRef]
  • Lozano-Blanco G., Thybaut J.W., Surla K., Galtier P., Marin G.B. (2008) Single-Event Microkinetic Model for Fischer—Tropsch Synthesis on Iron-Based Catalysts, Ind. Eng. Chem. Res. 47, 5879-5891. [CrossRef]
  • Lozano-Blanco G., Surla K., Thybaut J.W., Marin G.B. (2011) Extension of the Single-Event Methodology to Metal Catalysis: Application to Fischer-Tropsch Synthesis, Oil Gas Sci. Technol. — Revue d’IFP Energies nouvelles. 66, 423-435. [CrossRef] [EDP Sciences]
  • Cochegrue H., Gauthier P., Verstraete J.J., Surla K., Guillaume D., Galtier P., et al. (2011) Reduction of Single Event Kinetic Models by Rigorous Relumping: Application to Catalytic Reforming, Oil Gas Sci. Technol. — Revue d’IFP Energies nouvelles. 66, 367-397. [CrossRef] [EDP Sciences]
  • Broadbelt L.J., Stark S.M., Klein M.T. (1994) Computer Generated Pyrolysis Modeling: On-the-Fly Generation of Species, Reactions, and Rates, Ind Eng. Chem. Res. 33, 790-799. [CrossRef]
  • De Witt M.J., Dooling D.J., Broadbelt L.J. (2000) Computer Generation of Reaction Mechanisms Using Quantitative Rate Information: Application to Long-Chain Hydrocarbon Pyrolysis, Ind. Eng. Chem. Res. 39, 2228-2237. [CrossRef]
  • Liguras D.K., Neurock M., Klein M.T., Stark S.M., Libanati C., Nigam A., et al. (1992) Monte Carlo simulation of complex reactive mixture: An FCC case study, AIChE Symposium Series 88, 68-75.
  • Merdrignac I., Espinat D. (2007) Physicochemical Characterization of Petroleum Fractions: the State of the Art, Oil Gas Sci. Technol. — Revue d’IFP Energies nouvelles. 62, 7-32. [CrossRef] [EDP Sciences]
  • Hudebine D., Verstraete J.J. (2004) Molecular reconstruction of LCO gasoils from overall petroleum analyses, Chem. Eng. Sci. 59, 4755-4763. [CrossRef]
  • Verstraete J.J., Revellin N., Dulot H. (2004) Molecular reconstruction of vacuum gasoils, Preprints of Papers — Am. Chem. Soc. Division Fuel Chem. 49, 20-21.
  • Verstraete J.J., Schnongs P., Dulot H., Hudebine D. (2010) Molecular reconstruction of heavy petroleum residue fractions, Chem. Eng. Sci. 65, 304-312. [CrossRef]
  • de Oliveira L.P., Trujillo Vazquez A., Verstraete J.J., Kolb M. (2013) Molecular reconstruction of petroleum fractions: Application to various vacuum residues, Energy Fuels 27, 3622-3641. [CrossRef]
  • Hudebine D., Verstraete J.J., Chapus T. (2011) Statistical Reconstruction of Gas Oil Cuts, Oil Gas Sci. Technol. —. Revue d’IFP Energies nouvelles 66, 461-477. [CrossRef] [EDP Sciences]
  • Neurock M., Nigam A., Trauth D.M., Klein M.T. (1994) Molecular representation of complex hydrocarbon feedstocks through efficient characterization and stochastic algorithms, Chem. Eng. Sci. 49, 4153-4177. [CrossRef]
  • Trauth D.M., Stark S.M., Petti T.F., Neurock M., Klein M.T. (1994) Representation of the Molecular Structure of Petroleum Resid through Characterization and Monte Carlo Modeling, Energy Fuels 8, 576-580. [CrossRef]
  • Hudebine D., Verstraete J.J. (2011) Reconstruction of Petroleum Feedstocks by Entropy Maximization. Application to FCC Gasolines, Oil Gas Sci. Technol. — Revue d’IFP Energies nouvelles 66, 437-460. [CrossRef] [EDP Sciences]
  • Van Geem K.M., Hudebine D., Reyniers M.-F., Wahl F., Verstraete J.J., Marin G.B. (2007) Molecular reconstruction of naphtha steam cracking feedstocks based on commercial indices, Comput. Chem. Eng. 31, 1020-1034. [CrossRef]
  • Van Geem K.M., Reyniers M.-F., Marin G.B. (2008) Challenges of Modeling Steam Cracking of Heavy Feedstocks, Oil Gas Sci. Technol. — Revue d’IFP Energies nouvelles 63, 79-94. [CrossRef] [EDP Sciences]
  • Shannon C.E. (1948) A mathematical theory of communication, Bell Syst. Tech. J. 27, 379-423, 623-656. [CrossRef] [MathSciNet]
  • Boduszynski M.M. (1988) Composition of heavy petroleums. 2, Molecular characterization, Energy Fuels 2, 597-613. [CrossRef]
  • McKenna A.M., Blakney G.T., Xian F., Glaser P.B., Rodgers R.P., Marshall A.G. (2010) Heavy Petroleum Composition. 2. Progression of the Boduszynski Model to the Limit of Distillation by Ultrahigh-Resolution FTICR Mass Spectrometry, Energy Fuels 24, 2939-2946. [CrossRef]
  • Sheu E.Y. (2002) Petroleum AsphalteneProperties, Characterization, and Issues, Energy Fuels 16, 74-82. [CrossRef]
  • Wiehe I.A. (1994) The Pendant-Core Building Block Model of Petroleum Residua, Energy Fuels 8, 536-544. [CrossRef]
  • API 2B2.I (1987) API procedure 2B2.1 for estimating the molecular weight of a petroleum fraction, API Technical Handbook.
  • Gillespie D.T. (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys. 22, 403-434. [NASA ADS] [CrossRef] [MathSciNet]
  • Gillespie D.T. (2007) Stochastic simulation of chemical kinetics, Annu. Rev. Phys. Chem. 58, 35-55. [NASA ADS] [CrossRef] [PubMed]
  • Gillespie D.T. (1992) A rigorous derivation of the chemical master equation, Physica A: Statistical Mechanics and Its Applications 188, 404-425. [NASA ADS] [CrossRef]
  • Schweitzer J.-M., Kressmann S. (2004) Ebullated bed reactor modeling for residue conversion, Chem. Eng. Sci. 59, 5637-5645. [CrossRef]
  • Pereira de Oliveira L., Verstraete J.J., Kolb M. (2012) A Monte Carlo modeling methodology for the simulation of hydrotreating processes, Chem. Eng. J. 207-208, 94-102. [CrossRef]
  • de Oliveira L.P., Verstraete J.J., Kolb M. (2013) Molecule- based kinetic modeling by Monte Carlo methods for heavy petroleum conversion, Science China Chemistry, DOI: 10.1007/s11426-013-4989-3 (in press).
  • de Oliveira L.P., Verstraete J.J., Kolb M. (2013) Simulating vacuum residue hydroconversion by means of Monte- Carlo techniques, Catalysis Today, DOI: 10.1016/j.cattod. 2013.08.011 (in press).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.