IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 6, November-December 2013
IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
Page(s) 1039 - 1048
DOI https://doi.org/10.2516/ogst/2012018
Published online 27 May 2013
  • Szekely J., Evans J.W. (1970) A structural model for gas-solid reactions with a moving boundary, Chem. Eng. Sci. 25, 1091-1107. [CrossRef] [Google Scholar]
  • Bhatia S., Perlmutter D.D. (1980) A random pore model for fluid-solid reactions: 1. Isothermal, kinetics control, AIChE J. 26, 379-386. [CrossRef] [Google Scholar]
  • Sohn H.Y. (1978) The law of additive reaction times in fluid-solid reactions, Metall. Trans. B 9, 89-96. [CrossRef] [Google Scholar]
  • Galwey A.K., Brown M.E. (1999) Thermal decomposition of ionic solids, Elsevier. [Google Scholar]
  • Sharp J.H., Brindley G.W., Achar B.N.N. (1966) Numerical data for some commonly used solid state reaction equations, J. Am. Ceram. Soc. 49, 379-382. [CrossRef] [Google Scholar]
  • Pijolat M., Favergeon L., Soustelle M. (2011) From the drawbacks of “Arrhenius-f(α)” rate equation towards a more general formalism and new kinetic models for the kinetic analysis of solid-gas reactions, Thermochim. Acta 525, 1-2, 93-102. [CrossRef] [Google Scholar]
  • Achar B.N.N., Brindley G.W., Sharp J.H. (1966) Kinetics and mechanism of dehydroxylation rocesses. III. Applications and limitations of dynamic models, in Proceedings of International Clay Conference, Jerusalem, vol. 1, pp. 67-73. [Google Scholar]
  • Holt J.B., Cutler I.B., Wadsworth M.E. (1962) Thermal dehydration of kaolinite in vacuum, J. Am. Ceram. Soc. 45, 133-136. [CrossRef] [Google Scholar]
  • Brindley G.W., Sharp J.H., Paterson J.H., Achar B.N.N. (1967) Kinetics and mechanism of dehydroxylation processes, I. Temperature and vapor pressure dependence of dehydroxylation of kaolinite, Am. Mineral. 52, 201-209. [Google Scholar]
  • Horvath I. (1985) Kinetics and compensation effect in kaolinite dehydroxylation, Thermochim. Acta 85, 193-198. [CrossRef] [Google Scholar]
  • Redfern S.A.T. (1987) The kinetics of dehydroxylation of kaolinite, Clay Miner. 22, 447-546. [CrossRef] [Google Scholar]
  • Perrin S. (2002) PhD Thesis, École Nationale Supérieure des Mines, Saint-Étienne, France. [Google Scholar]
  • Nahdi K., Perrin S., Pijolat M., Rouquerol F., Ariguib N., Ayadi M. (2002) Nucleation and anisotropic growth model for isothermal kaolinite dehydroxylation under controlled water vapour pressure, Phys. Chem. Chem. Phys. 4, 1972-1977. [CrossRef] [Google Scholar]
  • Soustelle M. (2010) Handbook of Heterogeneous Chemistry, Edition J. Wiley and ISTE Ltd. [Google Scholar]
  • Johnson W.A., Mehl R.F. (1939) Reaction kinetics in processes of nucleation and growth, Trans. AIME 135, 416-442. [Google Scholar]
  • Mampel K.L. (1940) Zeitumsatzformeln für heterogene Reaktionen an Phasengrenzen fester Körper, Z. Phys. Chem. A 187, 235-249. [Google Scholar]
  • Delmon B. (1969) Introduction à la cinétique hétérogène, Ed. Technip, p. 397. [Google Scholar]
  • Favergeon L., Pijolat M., Soustelle M., A family of surface nucleation and anisotropic growth models for solid-gas reactions, submitted to Thermochimica Acta. [Google Scholar]
  • Reid R.C., Prausnitz J.M., Poling B.E. (1987) The properties of gases and liquids, MCGraw Hill, New-York. [Google Scholar]
  • Bird R.B., Stewart W.E., Lightfoot E.N. (2002) Transport phenomena, Wiley International Edition. [Google Scholar]
  • Geuzaine C., Remacle J.F. (2009) Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng. 79, 11, 1309-1331. [CrossRef] [Google Scholar]
  • Wilke C.R. (1950) A viscosity equation for gas mixtures, J. Chem. Phys. 18, 517-519. [CrossRef] [Google Scholar]
  • Johnson H.B., Kessler F. (1969) Kaolinite dehydroxylation kinetics, J. Am. Ceram. Soc. 52, 4, 199-204. [CrossRef] [Google Scholar]
  • Ortega A., Macias M., Gotor F.J. (2010) The multistep nature of the kaolinite dehydroxylation: kinetics and mechanism, J. Am. Ceram. Soc. 1, 197-203. [CrossRef] [Google Scholar]
  • Hutchinson R.W., Kleinberg S., Stein F.P. (1973) Effect of particle-size distribution on the thermal decomposition of a-lead azide, J. Phys. Chem. 77, 7, 870-875. [CrossRef] [Google Scholar]
  • Bircumshaw L.L., Newman B.H. (1954) The thermal decomposition of ammonium perchlorate II. The kinetics of the decomposition, the effect of particle size and discussion of results, Proc. Roy. Soc. A 227, 1169, 228-241. [Google Scholar]
  • Sasaki H. (1964) Introduction of particle-size distribution into kinetics of solid-state reaction, J. Am. Ceram. Soc. 47, 10, 512-516. [CrossRef] [Google Scholar]
  • McIlvried H.G., Massoth F.E. (1973) Effect of particle size distribution on gas-solid reaction kinetics for spherical particles, Ind. Eng. Chem. Fund. 12, 2, 225-229. [CrossRef] [Google Scholar]
  • Kapur P.C. (1973) Kinetics of solid-state reactions of particulate ensembles with size distributions, J. Am. Ceram. Soc. 56, 2, 79-81. [CrossRef] [Google Scholar]
  • Lahiri A.K. (1980) The effect of particle size distribution on TG, Thermochim. Acta 40, 289-295. [CrossRef] [Google Scholar]
  • Miyokawa K., Masuda I. (1985) Influence of particle size distribution of a sample on the kinetic parameters determined by thermogravimetric curves, Thermochim. Acta 86, 113-118. [CrossRef] [Google Scholar]
  • Urrutia G.A., Blesa M.A. (1988) The influence of particle size distribution on the conversion/time profiles under contractinggeometry kinetic regimes, React. Solids 6, 281-284. [CrossRef] [Google Scholar]
  • Koga N., Criado J.M. (1997) Influence of the particle size distribution on the CRTA curves for the solid-state reactions of interface shrinkage type, J. Therm. Anal. Calorim. 49, 1477-1484. [CrossRef] [Google Scholar]
  • Koga N., Criado J.M. (1998) Kinetic analyses of solid-state reactions with a particle size distribution, J. Am. Ceram. Soc. 81, 11, 2901-2909. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.