IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 6, November-December 2013
IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
Page(s) 1039 - 1048
DOI https://doi.org/10.2516/ogst/2012018
Published online 27 May 2013
  • Szekely J., Evans J.W. (1970) A structural model for gas-solid reactions with a moving boundary, Chem. Eng. Sci. 25, 1091-1107. [CrossRef]
  • Bhatia S., Perlmutter D.D. (1980) A random pore model for fluid-solid reactions: 1. Isothermal, kinetics control, AIChE J. 26, 379-386. [CrossRef]
  • Sohn H.Y. (1978) The law of additive reaction times in fluid-solid reactions, Metall. Trans. B 9, 89-96. [CrossRef]
  • Galwey A.K., Brown M.E. (1999) Thermal decomposition of ionic solids, Elsevier.
  • Sharp J.H., Brindley G.W., Achar B.N.N. (1966) Numerical data for some commonly used solid state reaction equations, J. Am. Ceram. Soc. 49, 379-382. [CrossRef]
  • Pijolat M., Favergeon L., Soustelle M. (2011) From the drawbacks of “Arrhenius-f(α)” rate equation towards a more general formalism and new kinetic models for the kinetic analysis of solid-gas reactions, Thermochim. Acta 525, 1-2, 93-102. [CrossRef]
  • Achar B.N.N., Brindley G.W., Sharp J.H. (1966) Kinetics and mechanism of dehydroxylation rocesses. III. Applications and limitations of dynamic models, in Proceedings of International Clay Conference, Jerusalem, vol. 1, pp. 67-73.
  • Holt J.B., Cutler I.B., Wadsworth M.E. (1962) Thermal dehydration of kaolinite in vacuum, J. Am. Ceram. Soc. 45, 133-136. [CrossRef]
  • Brindley G.W., Sharp J.H., Paterson J.H., Achar B.N.N. (1967) Kinetics and mechanism of dehydroxylation processes, I. Temperature and vapor pressure dependence of dehydroxylation of kaolinite, Am. Mineral. 52, 201-209.
  • Horvath I. (1985) Kinetics and compensation effect in kaolinite dehydroxylation, Thermochim. Acta 85, 193-198. [CrossRef]
  • Redfern S.A.T. (1987) The kinetics of dehydroxylation of kaolinite, Clay Miner. 22, 447-546. [CrossRef]
  • Perrin S. (2002) PhD Thesis, École Nationale Supérieure des Mines, Saint-Étienne, France.
  • Nahdi K., Perrin S., Pijolat M., Rouquerol F., Ariguib N., Ayadi M. (2002) Nucleation and anisotropic growth model for isothermal kaolinite dehydroxylation under controlled water vapour pressure, Phys. Chem. Chem. Phys. 4, 1972-1977. [CrossRef]
  • Soustelle M. (2010) Handbook of Heterogeneous Chemistry, Edition J. Wiley and ISTE Ltd.
  • Johnson W.A., Mehl R.F. (1939) Reaction kinetics in processes of nucleation and growth, Trans. AIME 135, 416-442.
  • Mampel K.L. (1940) Zeitumsatzformeln für heterogene Reaktionen an Phasengrenzen fester Körper, Z. Phys. Chem. A 187, 235-249.
  • Delmon B. (1969) Introduction à la cinétique hétérogène, Ed. Technip, p. 397.
  • Favergeon L., Pijolat M., Soustelle M., A family of surface nucleation and anisotropic growth models for solid-gas reactions, submitted to Thermochimica Acta.
  • Reid R.C., Prausnitz J.M., Poling B.E. (1987) The properties of gases and liquids, MCGraw Hill, New-York.
  • Bird R.B., Stewart W.E., Lightfoot E.N. (2002) Transport phenomena, Wiley International Edition.
  • Geuzaine C., Remacle J.F. (2009) Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng. 79, 11, 1309-1331. [CrossRef]
  • Wilke C.R. (1950) A viscosity equation for gas mixtures, J. Chem. Phys. 18, 517-519. [CrossRef]
  • Johnson H.B., Kessler F. (1969) Kaolinite dehydroxylation kinetics, J. Am. Ceram. Soc. 52, 4, 199-204. [CrossRef]
  • Ortega A., Macias M., Gotor F.J. (2010) The multistep nature of the kaolinite dehydroxylation: kinetics and mechanism, J. Am. Ceram. Soc. 1, 197-203. [CrossRef]
  • Hutchinson R.W., Kleinberg S., Stein F.P. (1973) Effect of particle-size distribution on the thermal decomposition of a-lead azide, J. Phys. Chem. 77, 7, 870-875. [CrossRef]
  • Bircumshaw L.L., Newman B.H. (1954) The thermal decomposition of ammonium perchlorate II. The kinetics of the decomposition, the effect of particle size and discussion of results, Proc. Roy. Soc. A 227, 1169, 228-241.
  • Sasaki H. (1964) Introduction of particle-size distribution into kinetics of solid-state reaction, J. Am. Ceram. Soc. 47, 10, 512-516. [CrossRef]
  • McIlvried H.G., Massoth F.E. (1973) Effect of particle size distribution on gas-solid reaction kinetics for spherical particles, Ind. Eng. Chem. Fund. 12, 2, 225-229. [CrossRef]
  • Kapur P.C. (1973) Kinetics of solid-state reactions of particulate ensembles with size distributions, J. Am. Ceram. Soc. 56, 2, 79-81. [CrossRef]
  • Lahiri A.K. (1980) The effect of particle size distribution on TG, Thermochim. Acta 40, 289-295. [CrossRef]
  • Miyokawa K., Masuda I. (1985) Influence of particle size distribution of a sample on the kinetic parameters determined by thermogravimetric curves, Thermochim. Acta 86, 113-118. [CrossRef]
  • Urrutia G.A., Blesa M.A. (1988) The influence of particle size distribution on the conversion/time profiles under contractinggeometry kinetic regimes, React. Solids 6, 281-284. [CrossRef]
  • Koga N., Criado J.M. (1997) Influence of the particle size distribution on the CRTA curves for the solid-state reactions of interface shrinkage type, J. Therm. Anal. Calorim. 49, 1477-1484. [CrossRef]
  • Koga N., Criado J.M. (1998) Kinetic analyses of solid-state reactions with a particle size distribution, J. Am. Ceram. Soc. 81, 11, 2901-2909. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.