Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 5, September-October 2013
Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Page(s) 829 - 840
DOI https://doi.org/10.2516/ogst/2012041
Published online 23 April 2013
  • Directive 2009/30/EC of the European Parliament and of the Council of 23 April 2009, amending Directive 98/70/EC as regards the specification of petrol, Diesel and gas-oil and introducing a mechanism to monitor and reduce greenhouse gas emissions and amending Council Directive 1999/32/EC as regards the specification of fuel used by inland waterway vessels and repealing Directive 93/12/EEC. [Google Scholar]
  • Furimsky E. (2000) Catalytic hydrodeoxygenation, Appl. Catal. A: Gen. 199, 147-190. [CrossRef] [Google Scholar]
  • Huber G.W., Corma A. (2007) Synergies between Bio- and Oil Refineries for the Production of Fuels from Biomass, Ang. Chem. Int. Ed. 46, 7184-7201. [CrossRef] [Google Scholar]
  • Huber, G.W., Iborra, S., Corma, A. (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts and engineering, Chem. Rev. 106, 4044-4098. [CrossRef] [PubMed] [Google Scholar]
  • Elliott D.C. (2007) Historical Developments in Hydroprocessing Bio-oils, Energy Fuels 21, 1792-1815. [CrossRef] [Google Scholar]
  • Czernik S., Bridgwater A.V. (2004) Overview of Applications of Biomass Fast Pyrolysis Oil, Energy Fuels 18, 590-598. [CrossRef] [Google Scholar]
  • Mortensen, P.M., Grunwaldt, J.-D., Jensen, P.A., Knudsen, K.G., Jensen, A.D. (2011) A review of catalytic upgrading of bio-oil to engine fuels, Appl. Catal. A: Gen. 407, 1-19. [CrossRef] [Google Scholar]
  • Raybaud P. (2007) Understanding and predicting improved sulfide catalysts: Insights from first principles modeling, Appl. Catal. A: Gen. 322, 76-91. [CrossRef] [Google Scholar]
  • Paul J.-F., Cristol S., Payen E. (2008) Computational studies of (mixed) sulfide hydrotreating catalysts, Catal. Today 130, 139-148. [CrossRef] [Google Scholar]
  • Viljava T.-R., Komulainen R.S., Krause A.O.I. (2000) Effect of H2S on the stability of CoMo/Al2O3 catalysts during hydrodeoxygenation, Catal. Today 60, 83-92. [CrossRef] [Google Scholar]
  • Senol O.I., Ryymin E.-M., Viljava T.-R., Krause A.O.I. (2007) Effect of hydrogen sulphide on the hydrodeoxygenation of aromatic and aliphatic oxygenates on sulphided catalysts, J. Mol. Catal. A: Chemistry 277, 107-112. [CrossRef] [Google Scholar]
  • Massoth F.E., Politzer P., Concha M.C., Murray J.S., Jakowski J., Simons J. (2006) Catalytic Hydrodeoxygenation of Methyl- Substituted Phenols: Correlations of Kinetic Parameters with Molecular Properties, J. Phys. Chem. B 110, 14283-14291. [CrossRef] [PubMed] [Google Scholar]
  • Romero, Y., Richard, F., Renème, Y., Brunet, S. (2009) Hydro - deoxygenation of benzofuran and its oxygenated derivatives (2,3-dihydrobenzofuran and 2-ethylphenol) over NiMoP/Al2O3 catalyst, Appl. Catal. A: Gen. 353, 46-53. [CrossRef] [Google Scholar]
  • Romero, Y., Richard, F., Brunet, S. (2010) Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: Promoting effect and reaction mechanism, Appl. Catal. B: Env. 98, 213-223. [CrossRef] [Google Scholar]
  • Bouvier C., Romero Y., Richard F., Brunet S. (2011) Effect of H2S and CO on the transformation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: Propositions of promoted active sites for deoxygenation pathways based on an experimental study, Green Chem. 13, 2441-2451. [CrossRef] [Google Scholar]
  • Pinheiro A., Hudebine D., Dupassieux N., Geantet C. (2009) Impact of Oxygenated Compounds from Lignocellulosic Biomass Pyrolysis Oils on Gas Oil Hydrotreatment, Energy Fuels 23, 1007-1014. [CrossRef] [Google Scholar]
  • Bui V.N., Toussaint G., Laurenti D., Mirodatos C., Geantet C. (2009) Co-processing of pyrolisis bio oils and gas oil for new generation of bio-fuels: Hydrodeoxygenation of guaïacol and SRGO mixed feed, Catal. Today 143, 172-178. [CrossRef] [Google Scholar]
  • Popov A., Kondratieva E., Goupil J.M., Mariey L., Bazin P., Gilson J.P., Travert A., Maugé F. (2010) Bio-oils Hydro - deoxygenation: Adsorption of Phenolic Molecules on Oxidic Catalyst Supports, J. Phys. Chem. C 114, 15661-15670. [CrossRef] [Google Scholar]
  • Bui V.N., Laurenti D., Afanasiev P., Geantet C. (2011) Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: Promoting effect of cobalt on HDO selectivity and activity, Appl. Catal. B: Env. 101, 239-245. [CrossRef] [Google Scholar]
  • Philippe M., Richard F., Hudebine D., Brunet S. (2010) Inhibiting effect of oxygenated model compounds on the HDS of dibenzothiophenes over CoMoP/Al2O3 catalyst, Appl. Catal. A: Gen. 383, 14-23. [CrossRef] [Google Scholar]
  • Badawi, M., Cristol, S., Paul, J.-F., Payen, E. (2009) DFT study of furan adsorption over stable molybdenum sulfide catalyst under HDO conditions, C. R. Chim. 12, 754-761. [CrossRef] [Google Scholar]
  • Badawi M., Paul J.-F., Cristol S., Payen E., Romero Y., Richard F., Brunet S., Lambert D., Portier X., Popov A., Kondratieva E., Goupil J.M., El Fallah J., Gilson J.-P., Mariey L., Travert A., Maugé F. (2011) Effect of water on the stability of Mo and CoMo hydrodeoxygenation catalysts: A combined experimental and DFT study, J. Catal. 282, 155-164. [CrossRef] [Google Scholar]
  • Badawi M., Paul J.-F., Cristol S., Payen E. (2011) Guaiacol derivatives and inhibiting species adsorption over MoS2 and CoMoS catalysts under HDO conditions: A DFT study, Catal. Commun. 12, 901-905. [CrossRef] [Google Scholar]
  • Mercader F.M., Groeneveld M.J., Kersten S.R.A., Way N.W.J., Schaverien C.J., Hogendoorn J.A. (2010) Production of advanced biofuels: Co-processing of upgraded pyrolysis oil in standard refinery units, Appl. Catal. B: Env. 96, 57-66. [CrossRef] [Google Scholar]
  • Mercader F.M., Groeneveld M.J., Kersten S.R.A., Geantet C., Toussaint G., Way N.W.J., Schaverien C.J., Hogendoorn K.J.A. (2011) Hydrodeoxygenation of pyrolysis oil fractions: process understanding and quality assessment through co-processing in refinery units, Energ. Environ. Sci. 4, 985-997. [CrossRef] [Google Scholar]
  • Perdew J.P., Chevary J.A., Vosko S.H., Jackson K.A., Pedersen M.R., Singh D.J., Frolais C. (1992) Atoms, molecules, solids and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46, 6671-6687. [NASA ADS] [CrossRef] [Google Scholar]
  • Kresse G., Hafner J. (1993) Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47, 558-561. [CrossRef] [Google Scholar]
  • Kresse G., Joubert J. (1999) From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758-1775. [NASA ADS] [CrossRef] [Google Scholar]
  • Cristol S., Paul J.-F., Payen E., Bougeard D., Clemendot S., Hutschka F. (2000) Theoretical Study of the MoS2 (100) Surface: A Chemical Potential Analysis of Sulfur and Hydrogen Coverage, J. Phys. Chem. B 104, 47, 11220-11229S. [CrossRef] [Google Scholar]
  • Cristol, S., Paul, J.-F., Schovsbo, C., Veilly, E., Payen, E. (2006) DFT study of thiophene adsorption on molybdenum sulphide, J. Catal. 239, 145-153. [CrossRef] [Google Scholar]
  • Paul J.-F., Cristol S., Payen E. (2008) Computational studies of (mixed) sulfide hydrotreating catalysts, Catal. Today 130, 139-148. [CrossRef] [Google Scholar]
  • Krebs, E., Silvi, B., Raybaud, P. (2008) Mixed sites and promoter segregation: A DFT study of the manifestation of Le Chatelier’s principle for the Co(Ni)MoS active phase in reaction conditions, Catal. Today 130, 160-169. [CrossRef] [MathSciNet] [Google Scholar]
  • Aubert C., Durand R., Geneste P., Moreau C. (1988) Factors affecting the hydrogenation of substituted benzenes and phenols over a sulfided Ni-O-MoO3/γ-Al2O3 catalyst, J. Catal. 112, 12-20. [CrossRef] [Google Scholar]
  • Toulhoat H., Raybaud P. (2003) Kinetic interpretation of catalytic activity patterns based on theoretical chemical descriptors, J. Catal. 216, 63-72. [CrossRef] [Google Scholar]
  • Viljava, T.-R., Krause, A.O.I. (1996) Hydrotreating of compounds containing both oxygen and sulfur: Effect of para-hydroxyl substituent on the reactions of mercapto and methylmercapto groups, Appl. Catal. A: Gen. 145, 237-251. [CrossRef] [Google Scholar]
  • Evans J.C. (1960) The vibrational spectra of phenol and phenol- OD, Spectrochim. Acta 16, 1382-1392. [CrossRef] [Google Scholar]
  • Roth, W., Imhof, P., Gerhards, M., Schumm, S., Kleinermanns, K. (2000) Reassignment of ground and first excited state vibrations in phenol, Chem. Phys. 252, 247-256. [CrossRef] [Google Scholar]
  • Popov, A., Kondratieva, E., Gilson, J.-P., Mariey, L., Travert, A., Maugé, F. (2011) IR study of the interaction of phenol with oxides and sulfided CoMo catalysts for bio-fuel hydrodeoxygenation, Catal. Today 172, 132-135. [CrossRef] [Google Scholar]
  • Travert A., Dujardin C., Mauge F., Veilly E., Cristol S., Paul J.-F., Payen E. (2006) CO Adsorption on CoMo and NiMo Sulfide Catalysts: A Combined IR and DFT Study, J. Phys. Chem. B 110, 1261-1270. [CrossRef] [PubMed] [Google Scholar]
  • Travert A., Dujardin C., Maugé F., Cristol S., Paul J.-F., Payen E., Bougeard D. (2000) Parallel between infrared characterisation and ab initio calculations of CO adsorption on sulphided Mo catalysts, Catal. Today 70, 255-269. [CrossRef] [Google Scholar]
  • Travert A., Nakamura H., van Santen R.A., Cristol S., Paul J.-F., Payen E. (2002) Hydrogen Activation on Mo-Based Sulfide Catalysts, a Periodic DFT Study, J. Am. Chem. Soc. 124, 24, 7084-7095. [CrossRef] [PubMed] [Google Scholar]
  • Pelardy F., Dupont C., Fontaine C., Devers E., Daudin A., Bertoncini F., Raybaud P., Brunet S. (2010) Impact of CO on the transformation of a model FCC gasoline over CoMoS/Al2O3 catalysts: A combined kinetic and DFT approach, Appl. Catal. B: Env. 97, 323-332. [CrossRef] [Google Scholar]
  • Dupond C., Lemeur R., Daudin A., Raybaud P. (2011) Hydro - deoxygenation pathways catalyzed by MoS2 and NiMoS active phases: A DFT study, Catal. 279, 276-286. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.