Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Numéro 5, September-October 2013
Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Page(s) 829 - 840
DOI https://doi.org/10.2516/ogst/2012041
Publié en ligne 23 avril 2013
  • Directive 2009/30/EC of the European Parliament and of the Council of 23 April 2009, amending Directive 98/70/EC as regards the specification of petrol, Diesel and gas-oil and introducing a mechanism to monitor and reduce greenhouse gas emissions and amending Council Directive 1999/32/EC as regards the specification of fuel used by inland waterway vessels and repealing Directive 93/12/EEC. [Google Scholar]
  • Furimsky E. (2000) Catalytic hydrodeoxygenation, Appl. Catal. A: Gen. 199, 147-190. [CrossRef] [Google Scholar]
  • Huber G.W., Corma A. (2007) Synergies between Bio- and Oil Refineries for the Production of Fuels from Biomass, Ang. Chem. Int. Ed. 46, 7184-7201. [Google Scholar]
  • Huber, G.W., Iborra, S., Corma, A. (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts and engineering, Chem. Rev. 106, 4044-4098. [CrossRef] [PubMed] [Google Scholar]
  • Elliott D.C. (2007) Historical Developments in Hydroprocessing Bio-oils, Energy Fuels 21, 1792-1815. [CrossRef] [Google Scholar]
  • Czernik S., Bridgwater A.V. (2004) Overview of Applications of Biomass Fast Pyrolysis Oil, Energy Fuels 18, 590-598. [CrossRef] [Google Scholar]
  • Mortensen, P.M., Grunwaldt, J.-D., Jensen, P.A., Knudsen, K.G., Jensen, A.D. (2011) A review of catalytic upgrading of bio-oil to engine fuels, Appl. Catal. A: Gen. 407, 1-19. [Google Scholar]
  • Raybaud P. (2007) Understanding and predicting improved sulfide catalysts: Insights from first principles modeling, Appl. Catal. A: Gen. 322, 76-91. [CrossRef] [Google Scholar]
  • Paul J.-F., Cristol S., Payen E. (2008) Computational studies of (mixed) sulfide hydrotreating catalysts, Catal. Today 130, 139-148. [CrossRef] [Google Scholar]
  • Viljava T.-R., Komulainen R.S., Krause A.O.I. (2000) Effect of H2S on the stability of CoMo/Al2O3 catalysts during hydrodeoxygenation, Catal. Today 60, 83-92. [CrossRef] [Google Scholar]
  • Senol O.I., Ryymin E.-M., Viljava T.-R., Krause A.O.I. (2007) Effect of hydrogen sulphide on the hydrodeoxygenation of aromatic and aliphatic oxygenates on sulphided catalysts, J. Mol. Catal. A: Chemistry 277, 107-112. [CrossRef] [Google Scholar]
  • Massoth F.E., Politzer P., Concha M.C., Murray J.S., Jakowski J., Simons J. (2006) Catalytic Hydrodeoxygenation of Methyl- Substituted Phenols: Correlations of Kinetic Parameters with Molecular Properties, J. Phys. Chem. B 110, 14283-14291. [CrossRef] [PubMed] [Google Scholar]
  • Romero, Y., Richard, F., Renème, Y., Brunet, S. (2009) Hydro - deoxygenation of benzofuran and its oxygenated derivatives (2,3-dihydrobenzofuran and 2-ethylphenol) over NiMoP/Al2O3 catalyst, Appl. Catal. A: Gen. 353, 46-53. [CrossRef] [Google Scholar]
  • Romero, Y., Richard, F., Brunet, S. (2010) Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: Promoting effect and reaction mechanism, Appl. Catal. B: Env. 98, 213-223. [CrossRef] [Google Scholar]
  • Bouvier C., Romero Y., Richard F., Brunet S. (2011) Effect of H2S and CO on the transformation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: Propositions of promoted active sites for deoxygenation pathways based on an experimental study, Green Chem. 13, 2441-2451. [CrossRef] [Google Scholar]
  • Pinheiro A., Hudebine D., Dupassieux N., Geantet C. (2009) Impact of Oxygenated Compounds from Lignocellulosic Biomass Pyrolysis Oils on Gas Oil Hydrotreatment, Energy Fuels 23, 1007-1014. [CrossRef] [Google Scholar]
  • Bui V.N., Toussaint G., Laurenti D., Mirodatos C., Geantet C. (2009) Co-processing of pyrolisis bio oils and gas oil for new generation of bio-fuels: Hydrodeoxygenation of guaïacol and SRGO mixed feed, Catal. Today 143, 172-178. [CrossRef] [Google Scholar]
  • Popov A., Kondratieva E., Goupil J.M., Mariey L., Bazin P., Gilson J.P., Travert A., Maugé F. (2010) Bio-oils Hydro - deoxygenation: Adsorption of Phenolic Molecules on Oxidic Catalyst Supports, J. Phys. Chem. C 114, 15661-15670. [CrossRef] [Google Scholar]
  • Bui V.N., Laurenti D., Afanasiev P., Geantet C. (2011) Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: Promoting effect of cobalt on HDO selectivity and activity, Appl. Catal. B: Env. 101, 239-245. [CrossRef] [Google Scholar]
  • Philippe M., Richard F., Hudebine D., Brunet S. (2010) Inhibiting effect of oxygenated model compounds on the HDS of dibenzothiophenes over CoMoP/Al2O3 catalyst, Appl. Catal. A: Gen. 383, 14-23. [CrossRef] [Google Scholar]
  • Badawi, M., Cristol, S., Paul, J.-F., Payen, E. (2009) DFT study of furan adsorption over stable molybdenum sulfide catalyst under HDO conditions, C. R. Chim. 12, 754-761. [CrossRef] [Google Scholar]
  • Badawi M., Paul J.-F., Cristol S., Payen E., Romero Y., Richard F., Brunet S., Lambert D., Portier X., Popov A., Kondratieva E., Goupil J.M., El Fallah J., Gilson J.-P., Mariey L., Travert A., Maugé F. (2011) Effect of water on the stability of Mo and CoMo hydrodeoxygenation catalysts: A combined experimental and DFT study, J. Catal. 282, 155-164. [CrossRef] [Google Scholar]
  • Badawi M., Paul J.-F., Cristol S., Payen E. (2011) Guaiacol derivatives and inhibiting species adsorption over MoS2 and CoMoS catalysts under HDO conditions: A DFT study, Catal. Commun. 12, 901-905. [CrossRef] [Google Scholar]
  • Mercader F.M., Groeneveld M.J., Kersten S.R.A., Way N.W.J., Schaverien C.J., Hogendoorn J.A. (2010) Production of advanced biofuels: Co-processing of upgraded pyrolysis oil in standard refinery units, Appl. Catal. B: Env. 96, 57-66. [Google Scholar]
  • Mercader F.M., Groeneveld M.J., Kersten S.R.A., Geantet C., Toussaint G., Way N.W.J., Schaverien C.J., Hogendoorn K.J.A. (2011) Hydrodeoxygenation of pyrolysis oil fractions: process understanding and quality assessment through co-processing in refinery units, Energ. Environ. Sci. 4, 985-997. [CrossRef] [Google Scholar]
  • Perdew J.P., Chevary J.A., Vosko S.H., Jackson K.A., Pedersen M.R., Singh D.J., Frolais C. (1992) Atoms, molecules, solids and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46, 6671-6687. [Google Scholar]
  • Kresse G., Hafner J. (1993) Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47, 558-561. [Google Scholar]
  • Kresse G., Joubert J. (1999) From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758-1775. [Google Scholar]
  • Cristol S., Paul J.-F., Payen E., Bougeard D., Clemendot S., Hutschka F. (2000) Theoretical Study of the MoS2 (100) Surface: A Chemical Potential Analysis of Sulfur and Hydrogen Coverage, J. Phys. Chem. B 104, 47, 11220-11229S. [CrossRef] [Google Scholar]
  • Cristol, S., Paul, J.-F., Schovsbo, C., Veilly, E., Payen, E. (2006) DFT study of thiophene adsorption on molybdenum sulphide, J. Catal. 239, 145-153. [CrossRef] [Google Scholar]
  • Paul J.-F., Cristol S., Payen E. (2008) Computational studies of (mixed) sulfide hydrotreating catalysts, Catal. Today 130, 139-148. [CrossRef] [Google Scholar]
  • Krebs, E., Silvi, B., Raybaud, P. (2008) Mixed sites and promoter segregation: A DFT study of the manifestation of Le Chatelier’s principle for the Co(Ni)MoS active phase in reaction conditions, Catal. Today 130, 160-169. [CrossRef] [MathSciNet] [Google Scholar]
  • Aubert C., Durand R., Geneste P., Moreau C. (1988) Factors affecting the hydrogenation of substituted benzenes and phenols over a sulfided Ni-O-MoO3/γ-Al2O3 catalyst, J. Catal. 112, 12-20. [CrossRef] [Google Scholar]
  • Toulhoat H., Raybaud P. (2003) Kinetic interpretation of catalytic activity patterns based on theoretical chemical descriptors, J. Catal. 216, 63-72. [CrossRef] [Google Scholar]
  • Viljava, T.-R., Krause, A.O.I. (1996) Hydrotreating of compounds containing both oxygen and sulfur: Effect of para-hydroxyl substituent on the reactions of mercapto and methylmercapto groups, Appl. Catal. A: Gen. 145, 237-251. [CrossRef] [Google Scholar]
  • Evans J.C. (1960) The vibrational spectra of phenol and phenol- OD, Spectrochim. Acta 16, 1382-1392. [CrossRef] [Google Scholar]
  • Roth, W., Imhof, P., Gerhards, M., Schumm, S., Kleinermanns, K. (2000) Reassignment of ground and first excited state vibrations in phenol, Chem. Phys. 252, 247-256. [CrossRef] [Google Scholar]
  • Popov, A., Kondratieva, E., Gilson, J.-P., Mariey, L., Travert, A., Maugé, F. (2011) IR study of the interaction of phenol with oxides and sulfided CoMo catalysts for bio-fuel hydrodeoxygenation, Catal. Today 172, 132-135. [CrossRef] [Google Scholar]
  • Travert A., Dujardin C., Mauge F., Veilly E., Cristol S., Paul J.-F., Payen E. (2006) CO Adsorption on CoMo and NiMo Sulfide Catalysts: A Combined IR and DFT Study, J. Phys. Chem. B 110, 1261-1270. [CrossRef] [PubMed] [Google Scholar]
  • Travert A., Dujardin C., Maugé F., Cristol S., Paul J.-F., Payen E., Bougeard D. (2000) Parallel between infrared characterisation and ab initio calculations of CO adsorption on sulphided Mo catalysts, Catal. Today 70, 255-269. [CrossRef] [Google Scholar]
  • Travert A., Nakamura H., van Santen R.A., Cristol S., Paul J.-F., Payen E. (2002) Hydrogen Activation on Mo-Based Sulfide Catalysts, a Periodic DFT Study, J. Am. Chem. Soc. 124, 24, 7084-7095. [CrossRef] [PubMed] [Google Scholar]
  • Pelardy F., Dupont C., Fontaine C., Devers E., Daudin A., Bertoncini F., Raybaud P., Brunet S. (2010) Impact of CO on the transformation of a model FCC gasoline over CoMoS/Al2O3 catalysts: A combined kinetic and DFT approach, Appl. Catal. B: Env. 97, 323-332. [CrossRef] [Google Scholar]
  • Dupond C., Lemeur R., Daudin A., Raybaud P. (2011) Hydro - deoxygenation pathways catalyzed by MoS2 and NiMoS active phases: A DFT study, Catal. 279, 276-286. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.