Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 5, September-October 2013
Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Page(s) 841 - 860
DOI https://doi.org/10.2516/ogst/2012073
Published online 27 May 2013
  • Thomas E. (1999) Biomass in the energy picture, Science 285, 5431, 1209-1209. [Google Scholar]
  • Kamm B. (2007) Production of platform chemicals and synthesis gas from biomass, Ang. Chem. Int. Ed. 46, 27, 5056-5058. [CrossRef] [Google Scholar]
  • Vispute T.P., Huber G.W. (2008) Breaking the chemical and engineering barriers to lignocellulosic biofuels, Int. Sugar J. 110, 1311, 138-319. [Google Scholar]
  • Bludowsky T., Agar D.W. (2009) Thermally integrated biosyngas- production for biorefineries, Chem. Eng. Res. Des. 87, 9, 1328-1339. [CrossRef] [Google Scholar]
  • Chheda J.N., Huber G.W., Dumesic J.A. (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals, Ang. Chem. Int. Ed. 46, 38, 7164-7183. [CrossRef] [Google Scholar]
  • Pu Y.Q., Zhang D.C., Singh P.M., Ragauskas A.J. (2008) The new forestry biofuels sector, Biofuel. Bioprod. Bior. 2, 1, 58-73. [CrossRef] [Google Scholar]
  • Lin Y.C., Huber G.W. (2009) The critical role of heterogeneous catalysis in lignocellulosic biomass conversion, Energ. Environ. Sci. 2, 1, 68-80. [CrossRef] [Google Scholar]
  • Petrus L., Noordermeer M.A. (2006) Biomass to biofuels, a chemical perspective, Green Chem. 8, 10, 861-867. [CrossRef] [Google Scholar]
  • Deng W.P., Tan X.S., Fang W.H., Zhang Q.H., Wang Y. (2009) Conversion of Cellulose into Sorbitol over Carbon Nanotube- Supported Ruthenium Catalyst, Catal. Lett. 133, 1-2, 167-174. [CrossRef] [Google Scholar]
  • Ding L.N., Wang A.Q., Zheng M.Y., Zhang T. (2010) Selective Transformation of Cellulose into Sorbitol by Using a Bifunctional Nickel Phosphide Catalyst, ChemSuschem. 3, 7, 818-821. [CrossRef] [PubMed] [Google Scholar]
  • Fukuoka A., Dhepe P.L. (2006) Catalytic Conversion of Cellulose into Sugar Alcohols, Ang. Chem. Int. Ed. 45, 31, 5161-5163. [CrossRef] [Google Scholar]
  • Blanc B., Bourrel A., Gallezot P., Haas T., Taylor P. (2000) Starch-derived polyols for polymer technologies: preparation by hydrogenolysis on metal catalysts, Green Chem. 2, 2, 89-91. [CrossRef] [Google Scholar]
  • Werty T., Petersen G.R. (2004) Topvalue added chemicals from biomass (top 12). DOE/GO-102004-1992. [Google Scholar]
  • Bozell J.J., Petersen G.R. (2010) Technology development for the production of biobased products from biorefinery carbohydrates- the US Department of Energy’s “Top 10” revisited, Green Chem. 12, 4, 539-554. [CrossRef] [Google Scholar]
  • Huber G.W., Iborra S., Corma A. (2009) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering, Chem. Rev. 106, 4044-4098. [CrossRef] [PubMed] [Google Scholar]
  • Zartman W.H., Adkins H. (1933) Hydrogenolysis of Sugars, J. Am. Chem. Soc. 55, 11, 4559-4563. [CrossRef] [Google Scholar]
  • Clark I. (1958) Hydrogenolysis of Sorbitol, Ind. Eng. Chem. 50, 8, 1125-1126. [CrossRef] [Google Scholar]
  • Montassier C., Giraud D., Barbier J., Boitiaux J.P. (1989) Polyol transformation by liquid-phase heterogeneous catalysis over metals, Bull. Soc. Chim. Fr. 2, 148-155. [Google Scholar]
  • Giraud D. (1986) Etude de l’hydrogénolyse catalytique de polyols en phase liquide, Thèse, Doctorat de Catalyse Organique, Université de Poitiers. [Google Scholar]
  • Montassier C., Menezo J.C., Moukolo J., Naja J., Hoang L.C., Barbier J., Boitiaux J.P. (1991) Polyol conversions into furanic derivatives on bimetallic catalysts - Cu-Ru, Cu-Pt and Ru-Cu, J. Mol. Catal. 70, 1, 65-84. [CrossRef] [Google Scholar]
  • Huber G.W., Dumesic J.A. (2006) An overview of aqueousphase catalytic processes for production of hydrogen and alkanes in a biorefinery, Catal. Today 111, 1-2, 119-132. [CrossRef] [Google Scholar]
  • Cortright R.D., Davda R.R., Dumesic J.A. (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water, Nature 418, 6901, 964-967. [CrossRef] [PubMed] [Google Scholar]
  • Huber G.W., Cortright R.D., Dumesic J.A. (2004) Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates, Ang. Chem. Int. Ed. 43, 12, 1549-1551. [CrossRef] [Google Scholar]
  • Huber G.W., Chheda J.N., Barrett C.J., Dumesic J.A. (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates, Science 308, 5727, 1446-1450. [CrossRef] [PubMed] [Google Scholar]
  • Montassier C., Menezo J.C., Hoang L.C., Renaud C., Barbier J. (1991) Aqueous polyol conversions on ruthenium and on sulfurmodified ruthenium, J. Mol. Catal. 70, 1, 99-110. [CrossRef] [Google Scholar]
  • Maris E.P., Davis R.J. (2007) Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts, J. Catal. 249, 2, 328-337. [CrossRef] [Google Scholar]
  • Nakagawa Y., Tomishige K. (2011) Heterogeneous catalysis of the glycerol hydrogenolysis, Catal. Sci. Technol. 1, 2, 179-190. [CrossRef] [Google Scholar]
  • Auneau F., Michel C., Delbecq F., Pinel C., Sautet P. (2011) Unravelling the Mechanism of Glycerol Hydrogenolysis over Rhodium Catalyst through Combined Experimental – Theoretical Investigations, Chem. Eur. J. 17, 50, 14288-14299. [CrossRef] [Google Scholar]
  • TenDam J., Hanefeld U. (2011) Renewable Chemicals: Dehydroxylation of Glycerol and Polyols, ChemSuschem. 4, 8, 1017-1034. [CrossRef] [PubMed] [Google Scholar]
  • Li N., Huber G.W. (2010) Aqueous-phase hydrodeoxygenation of sorbitol with Pt/SiO2-Al2O3: Identification of reaction intermediates, J. Catal. 207, 48-59. [CrossRef] [Google Scholar]
  • Ekou T., Flura A.l., Ekou L., Especel C., Royer S. (2012) Selective hydrogenation of citral to unsaturated alcohols over mesoporous Pt/Ti–Al2O3 catalysts. Effect of the reduction temperature and of the Ge addition, J. Mol. Catal. A: Chemical 353-354, , 148-155. [CrossRef] [Google Scholar]
  • Qin L.Z., Song M.J., Chen C.L. (2010) Aqueous-phase deoxygenation of glycerol to 1,3-propanediol over Pt/WO3/ZrO2 catalysts in a fixed-bed reactor, Green Chem. 12, 8, 1466-1472. [CrossRef] [Google Scholar]
  • Amada Y., Shinmi Y., Koso S., Kubota T., Nakagawa Y., Tomishige K. (2011) Reaction mechanism of the glycerol hydrogenolysis to 1,3-propanediol over Ir–ReOx/SiO2 catalyst, Appl. Catal. B: Environ. 105, 1-2, 117-127. [CrossRef] [Google Scholar]
  • D’Hondt E., de Vyver S.V., Sels B.F., Jacobs P.A. (2008) Catalytic glycerol conversion into 1,2-propanediol in absence of added hydrogen, Chem. Commun. 45, 6011-6012. [CrossRef] [Google Scholar]
  • Miyazawa T., Koso S., Kunimori K., Tomishige K. (2007) Development of a Ru/C catalyst for glycerol hydrogenolysis in combination with an ion-exchange resin, Appl. Catal. A: Gen. 318, 244-251. [CrossRef] [Google Scholar]
  • Peng B., Zhao C., Mejia-Centeno I., Fuentes G.A., Jentys A., Lercher J.A. (2012) Comparison of kinetics and reaction pathways for hydrodeoxygenation of C3 alcohols on Pt/Al2O3, Catal. Today 183, 1, 3-9. [CrossRef] [Google Scholar]
  • Otey F., Mehltretter C. (1961) Notes- A simple preparation of 1,4-anhydroerythritol, J. Organic Chem. 26, 5, 1673-1673. [CrossRef] [Google Scholar]
  • Montassier C., Menezo J.C., Naja J., Granger P., Barbier J., Sarrazin P., Didillon B. (1994) Polyol conversion into furanic derivatives on bimetallic catalysts, nature of the catalytic sites, J. Mol. Catal. 91, 1, 119-128. [CrossRef] [Google Scholar]
  • Montassier C., Dumas J.M., Granger P., Barbier J. (1995) Deactivation of supported copper-based catalysts during polyol conversion in aqueous-phase, Appl. Catal. A: Gen. 121, 2, 231-244. [CrossRef] [Google Scholar]
  • Ligthart G.B.W.L., Meijer R.H., Donners M.P.J., Meuldijk J., Vekemans J.A.J.M., Hulshof L.A. (2003) Highly sustainable catalytic dehydrogenation of alcohols with evolution of hydrogen gas, Tetrahedron Lett. 44, 7, 1507-1509. [CrossRef] [Google Scholar]
  • Alcala R., Mavrikakis M., Dumesic J.A. (2003) DFT studies for cleavage of C-C and C-O bonds in surface species derived from ethanol on Pt(111), J. Catal. 218, 1, 178-190. [CrossRef] [Google Scholar]
  • Murata K., Takahara I., Inaba M. (2008) Propane formation by aqueous-phase reforming of glycerol over Pt/H-ZSM5 catalysts, Reaction Kinetics Catal. Lett. 93, 1, 59-66. [CrossRef] [Google Scholar]
  • Liu B., Greeley J. (2011) Decomposition Pathways of Glycerol via C-H, O-H, and C-C Bond Scission on Pt(111): A Density Functional Theory Study, J. Phys. Chem. C 115, 40, 19702- 19709. [CrossRef] [Google Scholar]
  • Wawrzetz A., Peng B., Hrabar A., Jentys A., Lemonidou A.A., Lercher J.A. (2010) Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol, J. Catal. 269, 2, 411-420. [CrossRef] [Google Scholar]
  • Kirilin A.V., Tokarev A.V., Murzina E.V., Kustov L.M., Mikkola J.P., Murzin D.Y. (2010) Reaction products and transformations of intermediates in the aqueous-phase reforming of sorbitol, ChemSuschem. 3, 708-718. [CrossRef] [PubMed] [Google Scholar]
  • Pescarmona P.P., Janssen K.P.F., Delaet C., Stroobants C., Houthoofd K., Philippaerts A., De Jonghe C., Paul J.S., Jacobs P.A., Sels B.F. (2010) Zeolite-catalysed conversion of C3 sugars to alkyl lactates, Green Chem. 12, 6, 1083-1089. [CrossRef] [Google Scholar]
  • Wang K., Hawley M.C., Furney T.D. (1995) Mechanism Study of Sugar and Sugar Alcohol Hydrogenolysis Using 1,3-Diol Model Compounds, Ind. Eng. Chem. Res. 34, 11, 3766-3770. [CrossRef] [Google Scholar]
  • Shabaker J.W., Huber G.W., Davda R.R., Cortright R.D., Dumesic J.A. (2003) Aqueous-phase reforming of ethylene glycol over supported platinum catalysts, Catal. Lett. 88, 1-2, 1-8. [CrossRef] [Google Scholar]
  • Vispute T.P., Huber G.W. (2009) Production of hydrogen, alkanes and polyols by aqueous phase processing of wood-derived pyrolysis oils, Green Chem. 11, 9, 1433-1445. [CrossRef] [Google Scholar]
  • Li N., Tompsett G.A., Huber G.W. (2010) Renewable highoctane gasoline by aqueous-phase hydrodeoxygenation of C5 and C6 carbohydrates over Pt/zirconium phosphate catalysts, ChemSuschem. 3, 10, 1154-1157. [CrossRef] [PubMed] [Google Scholar]
  • Vilcocq L., Cabiac A., Especel C., Lacombe S., Duprez D. (2011) Study of the stability of Pt/SiO2–Al2O3 catalysts in aqueous medium: Application for sorbitol transformation, Catal. Commun. 15, 1, 18-22. [CrossRef] [Google Scholar]
  • Zhang Q., Qiu K., Li B., Jiang T., Zhang X., Ma L., Wang T. (2011) Isoparaffin production by aqueous phase processing of sorbitol over the Ni/HZSM-5 catalysts: Effect of the calcination temperature of the catalyst, Fuel 90, 11, 3468-3472. [CrossRef] [Google Scholar]
  • Banu M., Sivasanker S., Sankaranarayanan T.M., Venuvanalingam P. (2011) Hydrogenolysis of sorbitol over Ni and Pt loaded on NaY, Catal. Commun. 12, 7, 673-677. [CrossRef] [Google Scholar]
  • Gong L., Lu Y., Ding Y., Lin R., Li J., Dong W., Wang T., Chen W. (2010) Selective hydrogenolysis of glycerol to 1,3-propanediol over a Pt/WO3/TiO2/SiO2 catalyst in aqueous media, Appl. Catal. A: Gen. 390, 1-2, 119-126. [CrossRef] [Google Scholar]
  • Ravenelle R.M., Schuber F., D’Amico A., Danilina N., van Bokhoven J.A., Lercher J.A., Jones C.W., Sievers C. (2010) Stability of zeolites in hot liquid water, J. Phys. Chem. C 114, 46, 19582-19595. [CrossRef] [Google Scholar]
  • West R.M., Braden D.J., Dumesic J.A. (2009) Dehydration of butanol to butene over solid acid catalysts in high water environments, J. Catal. 262, 1, 134-143. [CrossRef] [Google Scholar]
  • West R.M., Tucker M.H., Braden D.J., Dumesic J.A. (2009) Production of alkanes from biomass derived carbohydrates on bi-functional catalysts employing niobium-based supports, Catal. Commun. 10, 13, 1743-1746. [CrossRef] [Google Scholar]
  • Okuhara T. (2002) Water-Tolerant Solid Acid Catalysts, Chem. Rev. 102, 10, 3641-3666. [CrossRef] [PubMed] [Google Scholar]
  • Pham H.N., Pagan-Torres Y.J., Serrano-Ruiz J.C., Wang D., Dumesic J.A., Datye A.K. (2011) Improved hydrothermal stability of niobia-supported Pd catalysts, Appl. Catal. A: Gen. 397, 1-2, 153-162. [CrossRef] [Google Scholar]
  • Weingarten R., Tompsett G.A., Conner J., Huber G.W. (2011) Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: The role of Lewis and Bronsted acid sites, J. Catal. 279, 1, 174-182. [CrossRef] [Google Scholar]
  • Sun P., Yu D., Hu Y., Tang Z., Xia J., Li H., Huang H. (2011) H3PW12O40/SiO2 for sorbitol dehydration to isosorbide: High efficient and reusable solid acid catalyst, Korean J. Chem. Eng. 28, 1, 99-105. [CrossRef] [Google Scholar]
  • Zhao L., Zhou J.H., Sui Z.J., Zhou X.G. (2010) Hydrogenolysis of sorbitol to glycols over carbon nanofiber supported ruthenium catalyst, Chem. Eng. Sci. 65, 1, 30-35. [CrossRef] [Google Scholar]
  • Zhou J.H., Zhang M.G., Zhao L., Li P., Zhou X.G., Yuan W.K. (2009) Carbon nanofiber/graphite-felt composite supported Ru catalysts for hydrogenolysis of sorbitol, Catal. Today 147, S225- S229. [CrossRef] [Google Scholar]
  • Miyazawa T., Kusunoki Y., Kunimori K., Tomishige K. (2006) Glycerol conversion in the aqueous solution under hydrogen over Ru/C plus an ion-exchange resin and its reaction mechanism, J. Catal. 240, 2, 213-221. [CrossRef] [Google Scholar]
  • Sohounloue D.K., Montassier C., Barbier J. (1983) Catalytic hydrogenolysis of sorbitol, React. Kinet. Catal. Lett. 22, 3-4, 391-397. [CrossRef] [Google Scholar]
  • Ravenelle R.M., Copeland J.R., Kim W.G., Crittenden J.C., Sievers C. (2011) Structural changes of γ-Al2O3-supported catalysts in hot liquid water, ACS Catal. 1, 5, 552-561. [CrossRef] [Google Scholar]
  • Wen G., Xu Y., Ma H., Xu Z., Tian Z. (2008) Production of hydrogen by aqueous-phase reforming of glycerol, Int. J. Hydrogen Energy 33, 22, 6657-6666. [CrossRef] [Google Scholar]
  • Davda R.R., Shabaker J.W., Huber G.W., Cortright R.D., Dumesic J.A. (2003) Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts, Appl. Catal. B-Environ. 43, 1, 13-26. [CrossRef] [Google Scholar]
  • Somorjai G.A. (1994) Introduction to Surface Chemistry and Catalysis, Wiley ed, New York. [Google Scholar]
  • Davda R.R., Shabaker J.W., Huber G.W., Cortright R.D., Dumesic J.A. (2005) A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueousphase reforming of oxygenated hydrocarbons over supported metal catalysts, Appl. Catal. B-Environ. 56, 1-2, 171-186. [CrossRef] [Google Scholar]
  • Ravenelle R.M., Diallo F.Z., Crittenden J.C., Sievers C. (2012) Effects of metal precursors on the stability and observed reactivity of Pt/γ-Al2O3 catalysts in aqueous phase reactions, Chem. Cat. Chem. 4, 4, 492-494. [Google Scholar]
  • Hoang L.C., Menezo J.C., Montassier C., Barbier J. (1991) Stability in aqueous phase of ruthenium catalysts, Bull. Soc. Chim. Fr. 4, 491-495. [Google Scholar]
  • Douidah A., Marecot P., Labruquere S., Barbier J. (2001) Stability of supported platinum catalysts in aqueous phase under hydrogen atmosphere, Appl. Catal. A: Gen. 210, 1-2, 111-120. [CrossRef] [Google Scholar]
  • Ketchie W.C., Maris E.P., Davis R.J. (2007) In-situ X-ray absorption spectroscopy of supported Ru catalysts in the aqueous phase, Chem. Mater. 19, 14, 3406-3411. [CrossRef] [Google Scholar]
  • Wen G., Xu Y., Xu Z., Tian Z. (2009) Characterization and catalytic properties of the Ni/Al2O3 catalysts for aqueous-phase reforming of glucose, Catal. Lett. 129, 250-257. [CrossRef] [Google Scholar]
  • Iriondo A., Barrio V.L., Cambra J.F., Arias P.L., Guemez M.B., Navarro R.M., Sanchez-Sanchez M.C., Fierro J.L.G. (2008) Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La, Topics Catal. 49, 1-2, 46-58. [CrossRef] [Google Scholar]
  • Huber G.W., Shabaker J.W., Evans S.T., Dumesic J.A. (2006) Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts, Appl. Catal. B: Environ. 62, 3-4, 226-235. [CrossRef] [Google Scholar]
  • Kunkes E.L., Soares R.R., Simonetti D.A., Dumesic J.A. (2009) An integrated catalytic approach for the production of hydrogen by glycerol reforming coupled with water-gas shift, Appl. Catal. B: Environ. 90, 3/4, 693-698. [CrossRef] [Google Scholar]
  • Kunkes E.L., Simonetti D.A., Dumesic J.A., Pyrz W.D., Murillo L.E., Chen J.G., Buttrey D.J. (2008) The role of rhenium in the conversion of glycerol to synthesis gas over carbon supported platinum-rhenium catalysts, J. Catal. 260, 1, 164-177. [CrossRef] [Google Scholar]
  • Bligaard T., Nørskov J.K., Dahl S., Matthiesen J., Christensen C.H., Sehested J. (2004) The Brønsted-Evans-Polani relation and the volcano curve in heterogeneous catalysis, J. Catal. 224, 206-217. [CrossRef] [Google Scholar]
  • Grenoble D.C., Estadt M.M., Ollis D.F. (1981) The chemistry and catalysis of the water gas shift reaction: 1. The kinetics over supported metal catalysts, J. Catal. 67, 1, 90-102. [CrossRef] [Google Scholar]
  • Chia M., Pagan-Torres Y.J., Hibbitts D., Tan Q., Pham H.N., Datye A.K., Neurock M., Davis R.J., Dumesic J.A. (2011) Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalysts, J. Am. Chem. Soc. 133, 32, 12675-12689. [CrossRef] [PubMed] [Google Scholar]
  • Shabaker J.W., Simonetti D.A., Cortright R.D., Dumesic J.A. (2005) Sn-modified Ni catalysts for aqueous-phase reforming: Characterization and deactivation studies, J. Catal. 231, 1, 67-76. [CrossRef] [Google Scholar]
  • Shabaker J.W., Dumesic J.A. (2004) Kinetics of aqueous-phase reforming of oxygenated hydrocarbons: Pt/Al2O3 and Sn-modified Ni catalysts, Ind. Eng. Chem. Res. 43, 12, 3105-3112. [CrossRef] [Google Scholar]
  • Shabaker J.W., Huber G.W., Dumesic J.A. (2004) Aqueousphase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts, J. Catal. 222, 1, 180-191. [CrossRef] [Google Scholar]
  • Huber G.W., Shabaker J.W., Dumesic J.A. (2003) Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons, Science 300, 5628, 2075-2077. [CrossRef] [PubMed] [Google Scholar]
  • Tanksale A., Zhou C.H., Beltramini J.N., Lu G.Q. (2009) Hydrogen production by aqueous phase reforming of sorbitol using bimetallic Ni-Pt catalysts: metal support interaction, J. Incl. Phenom. Macrocyclic Chem. 65, 1-2, 83-88. [CrossRef] [Google Scholar]
  • Simonetti D.A., Dumesic J.A. (2009) Catalytic production of liquid fuels from biomass-derived hydrocarbons: catalytic coupling at multiple length scales, Catal. Rev. 51, 441-484. [CrossRef] [Google Scholar]
  • Coll D., Delbecq F., Aray Y., Sautet P. (2011) Stability of intermediates in the glycerol hydrogenolysis on transition metal catalysts from first principles, Phys. Chem. Chem. Phys. 13, 4, 1448-1456. [CrossRef] [PubMed] [Google Scholar]
  • Zinoviev S., Müller-Langer F., Das P., Bertero N., Fornasiero P., Kaltschmitt M., Centi G., Miertus S. (2010) Next-Generation Biofuels: Survey of Emerging Technologies and Sustainability Issues, ChemSusChem. 3, 10, 1106-1133. [CrossRef] [PubMed] [Google Scholar]
  • Savage N. (2011) Fuel options: The ideal biofuel, Nature 474, 7352, S9-S11. [CrossRef] [PubMed] [Google Scholar]
  • Centi G., Lanzafame P., Perathoner S. (2011) Analysis of the alternative routes in the catalytic transformation of lignocellulosic materials, Catal. Today 167, 1, 14-30. [CrossRef] [Google Scholar]
  • Kumar P., Barrett D.M., Delwiche M.J., Stroeve P. (2009) Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production, Ind. Eng. Chem. Res. 48, 8, 3713-3729. [CrossRef] [Google Scholar]
  • Corma A., Iborra S., Velty A. (2007) Chemical routes for the transformation of biomass into Chemicals, Chem. Rev. 107, 2411-2502. [CrossRef] [PubMed] [Google Scholar]
  • Laxman R.S., Lachke A.H. (2009) Bioethanol from lignocellulosic biomass, in Handbook of plant based biofuels, Pandey A. (ed.), CRC Press. [Google Scholar]
  • Sun Y., Cheng J. (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresour. Technol. 83, 1, 1-11. [CrossRef] [PubMed] [Google Scholar]
  • Taherzadeh M., Karimi K. (2008) Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review, Int. J. Mol. Sci. 9, 9, 1621-1651. [CrossRef] [PubMed] [Google Scholar]
  • Delmas M. (2008) Vegetal Refining and Agrochemistry, Chem. Eng. Technol. 31, 5, 792-797. [CrossRef] [Google Scholar]
  • Lynd L.R., Wyman C.E., Gerngross T.U. (1999) Biocommodity engineering, Biotechnol. Progress 15, 777-793. [CrossRef] [Google Scholar]
  • Eggeman T., Elander R.T. (2005) Process and economic analysis of pretreatment technologies, Bioresour. Technol. 96, 18, 2019-2025. [CrossRef] [PubMed] [Google Scholar]
  • Sharma S.K., Kalra K.L., Grewal H.S. (2002) Enzymatic saccharification of pretreated sunflower stalks, Biomass Bioenergy 23, 3, 237-243. [CrossRef] [Google Scholar]
  • Hayes D.J. (2009) An examination of biorefining processes, catalysts and challenges, Catal. Today 145, 138-151. [CrossRef] [Google Scholar]
  • http://www1.eere.energy.gov/biomass/fy04/new_sugar_hydrolysis_enzymes.pdf. 2012. [Google Scholar]
  • Method of producing sugars using strong acid hydrolysis of cellulosic and hemicellulosic materials. Arkenol. US5562777A. 1994. [Google Scholar]
  • http://www.hclcleantech.com/. 2012. [Google Scholar]
  • Perego C., Bianchi D. (2010) Biomass upgrading through acidbase catalysis, Chem. Eng. J. 161, 3, 314-322. [CrossRef] [Google Scholar]
  • http://renmatix.com. 2012. [Google Scholar]
  • Kusserow B., Schimpf S., Claus P. (2003) Hydrogenation of Glucose to Sorbitol over Nickel and Ruthenium Catalysts, Adv. Synth. Catal. 345, 1-2, 289-299. [CrossRef] [Google Scholar]
  • Multi-stage aldoses to polyols process. Hydrocarbon research in. US4380678A. 1981. [Google Scholar]
  • Catalytic hydrogenation of glucose to produce sorbitol. Hydrocarbon research in. US4322569A. 1982. [Google Scholar]
  • Gallezot P., Nicolaus N., Fleche G., Fuertes P., Perrard A. (1998) Glucose hydrogenation on ruthenium catalysts in a trickle-bed reactor, J. Catal. 180, 1, 51-55. [CrossRef] [Google Scholar]
  • Ruppert A.M., Weinberg K., Palkovits R. (2012) Hydrogenolysis Goes Bio: From Carbohydrates and Sugar Alcohols to Platform Chemicals, Ang. Chem. Int. Ed. 51, 11, 2564-2601. [CrossRef] [Google Scholar]
  • Swami S.M., Chaudhari V., Kim D.S., Sim S.J., Abraham M.A. (2007) Production of Hydrogen from Glucose as a Biomass Simulant: Integrated Biological and Thermochemical Approach, Ind. Eng. Chem. Res. 47, 10, 3645-3651. [CrossRef] [Google Scholar]
  • Blommel P.G., Keenan G.R., Rozmiarek R.T., Cortright R.D. (2008) Catalytic conversion of sugar into conventional gasoline, Diesel, jet fuel, and other hydrocarbons, Int. Sugar J. 110, 1319, 672-679. [Google Scholar]
  • Kunkes E.L., Simonetti D.A., West R.M., Serrano-Ruiz J.C., Gartner C.A., Dumesic J.A. (2008) Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes, Science 322, 5900, 417-421. [CrossRef] [PubMed] [Google Scholar]
  • Marcilly C. (2003) Catalyse acido-basique : application au raffinage et à la pétrochimie, Ed. Technip, pp. 338-415. [Google Scholar]
  • de Klerk A., Leckel D.O., Prinsloo N.M. (2006) Butene Oligomerization by Phosphoric Acid Catalysis: Separating the Effects of Temperature and Catalyst Hydration on Product Selectivity, Ind. Eng. Chem. Res. 45, 18, 6127-6136. [CrossRef] [Google Scholar]
  • Single-reactor process for producing liquid-phase organic compounds from biomass. US2009255171A. 2009. [Google Scholar]
  • Rose M., Palkovits R. (2011) Cellulose-Based Sustainable Polymers: State of the Art and Future Trends, Macromol. Rapid Commun. 32, 17, 1299-1311. [CrossRef] [PubMed] [Google Scholar]
  • Menegassi R., Li J., Nederlof C., O’Connor P., Makkee M., Moulijn J.A. (2010) Cellulose Conversion to Isosorbide in Molten Salt hydrate Media, ChemSusChem. 3, 3, 325-328. [CrossRef] [PubMed] [Google Scholar]
  • Process for converting polysaccharides in an inorganic molten salt hydrate. BIO-eCON. WO201/106055. 2010. [Google Scholar]
  • www.virent.com. 2012. [Google Scholar]
  • Regalbuto J.R. (2009) Cellulosic Biofuels - Got Gasoline?, Science 325, 5942, 822-824. [CrossRef] [PubMed] [Google Scholar]
  • Davda R.R., Dumesic J.A. (2004) Renewable hydrogen by aqueous-phase reforming of glucose, Chem. Commun. 1, 36-37. [CrossRef] [Google Scholar]
  • Liu J., Chu X., Zhu L., Hu J., Dai R., Xie S., Pei Y., Yan S., Qiao M., Fan K. (2010) Simultaneous Aqueous-Phase Reforming and KOH Carbonation to Produce COx-Free Hydrogen in a Single Reactor, ChemSuschem. 3, 7, 803-806. [CrossRef] [PubMed] [Google Scholar]
  • James O.O., Maity S., Mesubi M.A., Ogunniran K.O., Siyanbola T.O., Sahu S., Chaubey R. (2011) Towards reforming technologies for production of hydrogen exclusively from renewable resources, Green Chem. 13, 9, 2272-2284. [CrossRef] [Google Scholar]
  • Komula D. (2011) Completing the Puzzle: 100% Plant-Derived PET, Bioplastics Magazine 6. [Google Scholar]
  • Keenan G. (2010) The World Congress on Industrial Biotechnology and Bioprocessing, Washington, 27-30 June. [Google Scholar]
  • Chen N.Y., Degnan T.F., Koenig L.R. (1986) Liquid fuels from carbohydrates, Chemtech. 16, 506-511. [Google Scholar]
  • Carlson T.R., Tompsett G.A., Conner W.C., Huber G.W. (2009) Aromatic Production from Catalytic Fast Pyrolysis of Biomass-Derived Feedstocks, Topics Catal. 52, 3, 241-252. [CrossRef] [Google Scholar]
  • Wen G., Xu Y., Xu Z., Tian Z. (2010) Direct conversion of cellulose into hydrogen by aqueous-phase reforming process, Catal. Commun. 11, 6, 522-526. [Google Scholar]
  • Conversion of carbohydrates to hydrocarbons. Conocophillips. WO2011/078909. 2011. [Google Scholar]
  • Zhao C., Lercher J.A. (2012) Upgrading Pyrolysis Oil over Ni/HZSM-5 by cascade Reactions, Ang. Chem. Int. Ed. 51, 1-7. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.