Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 5, September-October 2013
Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Page(s) 841 - 860
DOI https://doi.org/10.2516/ogst/2012073
Published online 27 May 2013
  • Thomas E. (1999) Biomass in the energy picture, Science 285, 5431, 1209-1209.
  • Kamm B. (2007) Production of platform chemicals and synthesis gas from biomass, Ang. Chem. Int. Ed. 46, 27, 5056-5058. [CrossRef]
  • Vispute T.P., Huber G.W. (2008) Breaking the chemical and engineering barriers to lignocellulosic biofuels, Int. Sugar J. 110, 1311, 138-319.
  • Bludowsky T., Agar D.W. (2009) Thermally integrated biosyngas- production for biorefineries, Chem. Eng. Res. Des. 87, 9, 1328-1339. [CrossRef]
  • Chheda J.N., Huber G.W., Dumesic J.A. (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals, Ang. Chem. Int. Ed. 46, 38, 7164-7183. [CrossRef]
  • Pu Y.Q., Zhang D.C., Singh P.M., Ragauskas A.J. (2008) The new forestry biofuels sector, Biofuel. Bioprod. Bior. 2, 1, 58-73. [CrossRef]
  • Lin Y.C., Huber G.W. (2009) The critical role of heterogeneous catalysis in lignocellulosic biomass conversion, Energ. Environ. Sci. 2, 1, 68-80. [CrossRef]
  • Petrus L., Noordermeer M.A. (2006) Biomass to biofuels, a chemical perspective, Green Chem. 8, 10, 861-867. [CrossRef]
  • Deng W.P., Tan X.S., Fang W.H., Zhang Q.H., Wang Y. (2009) Conversion of Cellulose into Sorbitol over Carbon Nanotube- Supported Ruthenium Catalyst, Catal. Lett. 133, 1-2, 167-174. [CrossRef]
  • Ding L.N., Wang A.Q., Zheng M.Y., Zhang T. (2010) Selective Transformation of Cellulose into Sorbitol by Using a Bifunctional Nickel Phosphide Catalyst, ChemSuschem. 3, 7, 818-821. [CrossRef] [PubMed]
  • Fukuoka A., Dhepe P.L. (2006) Catalytic Conversion of Cellulose into Sugar Alcohols, Ang. Chem. Int. Ed. 45, 31, 5161-5163. [CrossRef]
  • Blanc B., Bourrel A., Gallezot P., Haas T., Taylor P. (2000) Starch-derived polyols for polymer technologies: preparation by hydrogenolysis on metal catalysts, Green Chem. 2, 2, 89-91. [CrossRef]
  • Werty T., Petersen G.R. (2004) Topvalue added chemicals from biomass (top 12). DOE/GO-102004-1992.
  • Bozell J.J., Petersen G.R. (2010) Technology development for the production of biobased products from biorefinery carbohydrates- the US Department of Energy’s “Top 10” revisited, Green Chem. 12, 4, 539-554. [CrossRef]
  • Huber G.W., Iborra S., Corma A. (2009) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering, Chem. Rev. 106, 4044-4098. [CrossRef] [PubMed]
  • Zartman W.H., Adkins H. (1933) Hydrogenolysis of Sugars, J. Am. Chem. Soc. 55, 11, 4559-4563. [CrossRef]
  • Clark I. (1958) Hydrogenolysis of Sorbitol, Ind. Eng. Chem. 50, 8, 1125-1126. [CrossRef]
  • Montassier C., Giraud D., Barbier J., Boitiaux J.P. (1989) Polyol transformation by liquid-phase heterogeneous catalysis over metals, Bull. Soc. Chim. Fr. 2, 148-155.
  • Giraud D. (1986) Etude de l’hydrogénolyse catalytique de polyols en phase liquide, Thèse, Doctorat de Catalyse Organique, Université de Poitiers.
  • Montassier C., Menezo J.C., Moukolo J., Naja J., Hoang L.C., Barbier J., Boitiaux J.P. (1991) Polyol conversions into furanic derivatives on bimetallic catalysts - Cu-Ru, Cu-Pt and Ru-Cu, J. Mol. Catal. 70, 1, 65-84. [CrossRef]
  • Huber G.W., Dumesic J.A. (2006) An overview of aqueousphase catalytic processes for production of hydrogen and alkanes in a biorefinery, Catal. Today 111, 1-2, 119-132. [CrossRef]
  • Cortright R.D., Davda R.R., Dumesic J.A. (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water, Nature 418, 6901, 964-967. [CrossRef] [PubMed]
  • Huber G.W., Cortright R.D., Dumesic J.A. (2004) Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates, Ang. Chem. Int. Ed. 43, 12, 1549-1551. [CrossRef]
  • Huber G.W., Chheda J.N., Barrett C.J., Dumesic J.A. (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates, Science 308, 5727, 1446-1450. [CrossRef] [PubMed]
  • Montassier C., Menezo J.C., Hoang L.C., Renaud C., Barbier J. (1991) Aqueous polyol conversions on ruthenium and on sulfurmodified ruthenium, J. Mol. Catal. 70, 1, 99-110. [CrossRef]
  • Maris E.P., Davis R.J. (2007) Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts, J. Catal. 249, 2, 328-337. [CrossRef]
  • Nakagawa Y., Tomishige K. (2011) Heterogeneous catalysis of the glycerol hydrogenolysis, Catal. Sci. Technol. 1, 2, 179-190. [CrossRef]
  • Auneau F., Michel C., Delbecq F., Pinel C., Sautet P. (2011) Unravelling the Mechanism of Glycerol Hydrogenolysis over Rhodium Catalyst through Combined Experimental – Theoretical Investigations, Chem. Eur. J. 17, 50, 14288-14299. [CrossRef]
  • TenDam J., Hanefeld U. (2011) Renewable Chemicals: Dehydroxylation of Glycerol and Polyols, ChemSuschem. 4, 8, 1017-1034. [CrossRef] [PubMed]
  • Li N., Huber G.W. (2010) Aqueous-phase hydrodeoxygenation of sorbitol with Pt/SiO2-Al2O3: Identification of reaction intermediates, J. Catal. 207, 48-59. [CrossRef]
  • Ekou T., Flura A.l., Ekou L., Especel C., Royer S. (2012) Selective hydrogenation of citral to unsaturated alcohols over mesoporous Pt/Ti–Al2O3 catalysts. Effect of the reduction temperature and of the Ge addition, J. Mol. Catal. A: Chemical 353-354, , 148-155. [CrossRef]
  • Qin L.Z., Song M.J., Chen C.L. (2010) Aqueous-phase deoxygenation of glycerol to 1,3-propanediol over Pt/WO3/ZrO2 catalysts in a fixed-bed reactor, Green Chem. 12, 8, 1466-1472. [CrossRef]
  • Amada Y., Shinmi Y., Koso S., Kubota T., Nakagawa Y., Tomishige K. (2011) Reaction mechanism of the glycerol hydrogenolysis to 1,3-propanediol over Ir–ReOx/SiO2 catalyst, Appl. Catal. B: Environ. 105, 1-2, 117-127. [CrossRef]
  • D’Hondt E., de Vyver S.V., Sels B.F., Jacobs P.A. (2008) Catalytic glycerol conversion into 1,2-propanediol in absence of added hydrogen, Chem. Commun. 45, 6011-6012. [CrossRef]
  • Miyazawa T., Koso S., Kunimori K., Tomishige K. (2007) Development of a Ru/C catalyst for glycerol hydrogenolysis in combination with an ion-exchange resin, Appl. Catal. A: Gen. 318, 244-251. [CrossRef]
  • Peng B., Zhao C., Mejia-Centeno I., Fuentes G.A., Jentys A., Lercher J.A. (2012) Comparison of kinetics and reaction pathways for hydrodeoxygenation of C3 alcohols on Pt/Al2O3, Catal. Today 183, 1, 3-9. [CrossRef]
  • Otey F., Mehltretter C. (1961) Notes- A simple preparation of 1,4-anhydroerythritol, J. Organic Chem. 26, 5, 1673-1673. [CrossRef]
  • Montassier C., Menezo J.C., Naja J., Granger P., Barbier J., Sarrazin P., Didillon B. (1994) Polyol conversion into furanic derivatives on bimetallic catalysts, nature of the catalytic sites, J. Mol. Catal. 91, 1, 119-128. [CrossRef]
  • Montassier C., Dumas J.M., Granger P., Barbier J. (1995) Deactivation of supported copper-based catalysts during polyol conversion in aqueous-phase, Appl. Catal. A: Gen. 121, 2, 231-244. [CrossRef]
  • Ligthart G.B.W.L., Meijer R.H., Donners M.P.J., Meuldijk J., Vekemans J.A.J.M., Hulshof L.A. (2003) Highly sustainable catalytic dehydrogenation of alcohols with evolution of hydrogen gas, Tetrahedron Lett. 44, 7, 1507-1509. [CrossRef]
  • Alcala R., Mavrikakis M., Dumesic J.A. (2003) DFT studies for cleavage of C-C and C-O bonds in surface species derived from ethanol on Pt(111), J. Catal. 218, 1, 178-190. [CrossRef]
  • Murata K., Takahara I., Inaba M. (2008) Propane formation by aqueous-phase reforming of glycerol over Pt/H-ZSM5 catalysts, Reaction Kinetics Catal. Lett. 93, 1, 59-66. [CrossRef]
  • Liu B., Greeley J. (2011) Decomposition Pathways of Glycerol via C-H, O-H, and C-C Bond Scission on Pt(111): A Density Functional Theory Study, J. Phys. Chem. C 115, 40, 19702- 19709. [CrossRef]
  • Wawrzetz A., Peng B., Hrabar A., Jentys A., Lemonidou A.A., Lercher J.A. (2010) Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol, J. Catal. 269, 2, 411-420. [CrossRef]
  • Kirilin A.V., Tokarev A.V., Murzina E.V., Kustov L.M., Mikkola J.P., Murzin D.Y. (2010) Reaction products and transformations of intermediates in the aqueous-phase reforming of sorbitol, ChemSuschem. 3, 708-718. [CrossRef] [PubMed]
  • Pescarmona P.P., Janssen K.P.F., Delaet C., Stroobants C., Houthoofd K., Philippaerts A., De Jonghe C., Paul J.S., Jacobs P.A., Sels B.F. (2010) Zeolite-catalysed conversion of C3 sugars to alkyl lactates, Green Chem. 12, 6, 1083-1089. [CrossRef]
  • Wang K., Hawley M.C., Furney T.D. (1995) Mechanism Study of Sugar and Sugar Alcohol Hydrogenolysis Using 1,3-Diol Model Compounds, Ind. Eng. Chem. Res. 34, 11, 3766-3770. [CrossRef]
  • Shabaker J.W., Huber G.W., Davda R.R., Cortright R.D., Dumesic J.A. (2003) Aqueous-phase reforming of ethylene glycol over supported platinum catalysts, Catal. Lett. 88, 1-2, 1-8. [CrossRef]
  • Vispute T.P., Huber G.W. (2009) Production of hydrogen, alkanes and polyols by aqueous phase processing of wood-derived pyrolysis oils, Green Chem. 11, 9, 1433-1445. [CrossRef]
  • Li N., Tompsett G.A., Huber G.W. (2010) Renewable highoctane gasoline by aqueous-phase hydrodeoxygenation of C5 and C6 carbohydrates over Pt/zirconium phosphate catalysts, ChemSuschem. 3, 10, 1154-1157. [CrossRef] [PubMed]
  • Vilcocq L., Cabiac A., Especel C., Lacombe S., Duprez D. (2011) Study of the stability of Pt/SiO2–Al2O3 catalysts in aqueous medium: Application for sorbitol transformation, Catal. Commun. 15, 1, 18-22. [CrossRef]
  • Zhang Q., Qiu K., Li B., Jiang T., Zhang X., Ma L., Wang T. (2011) Isoparaffin production by aqueous phase processing of sorbitol over the Ni/HZSM-5 catalysts: Effect of the calcination temperature of the catalyst, Fuel 90, 11, 3468-3472. [CrossRef]
  • Banu M., Sivasanker S., Sankaranarayanan T.M., Venuvanalingam P. (2011) Hydrogenolysis of sorbitol over Ni and Pt loaded on NaY, Catal. Commun. 12, 7, 673-677. [CrossRef]
  • Gong L., Lu Y., Ding Y., Lin R., Li J., Dong W., Wang T., Chen W. (2010) Selective hydrogenolysis of glycerol to 1,3-propanediol over a Pt/WO3/TiO2/SiO2 catalyst in aqueous media, Appl. Catal. A: Gen. 390, 1-2, 119-126. [CrossRef]
  • Ravenelle R.M., Schuber F., D’Amico A., Danilina N., van Bokhoven J.A., Lercher J.A., Jones C.W., Sievers C. (2010) Stability of zeolites in hot liquid water, J. Phys. Chem. C 114, 46, 19582-19595. [CrossRef]
  • West R.M., Braden D.J., Dumesic J.A. (2009) Dehydration of butanol to butene over solid acid catalysts in high water environments, J. Catal. 262, 1, 134-143. [CrossRef]
  • West R.M., Tucker M.H., Braden D.J., Dumesic J.A. (2009) Production of alkanes from biomass derived carbohydrates on bi-functional catalysts employing niobium-based supports, Catal. Commun. 10, 13, 1743-1746. [CrossRef]
  • Okuhara T. (2002) Water-Tolerant Solid Acid Catalysts, Chem. Rev. 102, 10, 3641-3666. [CrossRef] [PubMed]
  • Pham H.N., Pagan-Torres Y.J., Serrano-Ruiz J.C., Wang D., Dumesic J.A., Datye A.K. (2011) Improved hydrothermal stability of niobia-supported Pd catalysts, Appl. Catal. A: Gen. 397, 1-2, 153-162. [CrossRef]
  • Weingarten R., Tompsett G.A., Conner J., Huber G.W. (2011) Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: The role of Lewis and Bronsted acid sites, J. Catal. 279, 1, 174-182. [CrossRef]
  • Sun P., Yu D., Hu Y., Tang Z., Xia J., Li H., Huang H. (2011) H3PW12O40/SiO2 for sorbitol dehydration to isosorbide: High efficient and reusable solid acid catalyst, Korean J. Chem. Eng. 28, 1, 99-105. [CrossRef]
  • Zhao L., Zhou J.H., Sui Z.J., Zhou X.G. (2010) Hydrogenolysis of sorbitol to glycols over carbon nanofiber supported ruthenium catalyst, Chem. Eng. Sci. 65, 1, 30-35. [CrossRef]
  • Zhou J.H., Zhang M.G., Zhao L., Li P., Zhou X.G., Yuan W.K. (2009) Carbon nanofiber/graphite-felt composite supported Ru catalysts for hydrogenolysis of sorbitol, Catal. Today 147, S225- S229. [CrossRef]
  • Miyazawa T., Kusunoki Y., Kunimori K., Tomishige K. (2006) Glycerol conversion in the aqueous solution under hydrogen over Ru/C plus an ion-exchange resin and its reaction mechanism, J. Catal. 240, 2, 213-221. [CrossRef]
  • Sohounloue D.K., Montassier C., Barbier J. (1983) Catalytic hydrogenolysis of sorbitol, React. Kinet. Catal. Lett. 22, 3-4, 391-397. [CrossRef]
  • Ravenelle R.M., Copeland J.R., Kim W.G., Crittenden J.C., Sievers C. (2011) Structural changes of γ-Al2O3-supported catalysts in hot liquid water, ACS Catal. 1, 5, 552-561. [CrossRef]
  • Wen G., Xu Y., Ma H., Xu Z., Tian Z. (2008) Production of hydrogen by aqueous-phase reforming of glycerol, Int. J. Hydrogen Energy 33, 22, 6657-6666. [CrossRef]
  • Davda R.R., Shabaker J.W., Huber G.W., Cortright R.D., Dumesic J.A. (2003) Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts, Appl. Catal. B-Environ. 43, 1, 13-26. [CrossRef]
  • Somorjai G.A. (1994) Introduction to Surface Chemistry and Catalysis, Wiley ed, New York.
  • Davda R.R., Shabaker J.W., Huber G.W., Cortright R.D., Dumesic J.A. (2005) A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueousphase reforming of oxygenated hydrocarbons over supported metal catalysts, Appl. Catal. B-Environ. 56, 1-2, 171-186. [CrossRef]
  • Ravenelle R.M., Diallo F.Z., Crittenden J.C., Sievers C. (2012) Effects of metal precursors on the stability and observed reactivity of Pt/γ-Al2O3 catalysts in aqueous phase reactions, Chem. Cat. Chem. 4, 4, 492-494.
  • Hoang L.C., Menezo J.C., Montassier C., Barbier J. (1991) Stability in aqueous phase of ruthenium catalysts, Bull. Soc. Chim. Fr. 4, 491-495.
  • Douidah A., Marecot P., Labruquere S., Barbier J. (2001) Stability of supported platinum catalysts in aqueous phase under hydrogen atmosphere, Appl. Catal. A: Gen. 210, 1-2, 111-120. [CrossRef]
  • Ketchie W.C., Maris E.P., Davis R.J. (2007) In-situ X-ray absorption spectroscopy of supported Ru catalysts in the aqueous phase, Chem. Mater. 19, 14, 3406-3411. [CrossRef]
  • Wen G., Xu Y., Xu Z., Tian Z. (2009) Characterization and catalytic properties of the Ni/Al2O3 catalysts for aqueous-phase reforming of glucose, Catal. Lett. 129, 250-257. [CrossRef]
  • Iriondo A., Barrio V.L., Cambra J.F., Arias P.L., Guemez M.B., Navarro R.M., Sanchez-Sanchez M.C., Fierro J.L.G. (2008) Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La, Topics Catal. 49, 1-2, 46-58. [CrossRef]
  • Huber G.W., Shabaker J.W., Evans S.T., Dumesic J.A. (2006) Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts, Appl. Catal. B: Environ. 62, 3-4, 226-235. [CrossRef]
  • Kunkes E.L., Soares R.R., Simonetti D.A., Dumesic J.A. (2009) An integrated catalytic approach for the production of hydrogen by glycerol reforming coupled with water-gas shift, Appl. Catal. B: Environ. 90, 3/4, 693-698. [CrossRef]
  • Kunkes E.L., Simonetti D.A., Dumesic J.A., Pyrz W.D., Murillo L.E., Chen J.G., Buttrey D.J. (2008) The role of rhenium in the conversion of glycerol to synthesis gas over carbon supported platinum-rhenium catalysts, J. Catal. 260, 1, 164-177. [CrossRef]
  • Bligaard T., Nørskov J.K., Dahl S., Matthiesen J., Christensen C.H., Sehested J. (2004) The Brønsted-Evans-Polani relation and the volcano curve in heterogeneous catalysis, J. Catal. 224, 206-217. [CrossRef]
  • Grenoble D.C., Estadt M.M., Ollis D.F. (1981) The chemistry and catalysis of the water gas shift reaction: 1. The kinetics over supported metal catalysts, J. Catal. 67, 1, 90-102. [CrossRef]
  • Chia M., Pagan-Torres Y.J., Hibbitts D., Tan Q., Pham H.N., Datye A.K., Neurock M., Davis R.J., Dumesic J.A. (2011) Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalysts, J. Am. Chem. Soc. 133, 32, 12675-12689. [CrossRef] [PubMed]
  • Shabaker J.W., Simonetti D.A., Cortright R.D., Dumesic J.A. (2005) Sn-modified Ni catalysts for aqueous-phase reforming: Characterization and deactivation studies, J. Catal. 231, 1, 67-76. [CrossRef]
  • Shabaker J.W., Dumesic J.A. (2004) Kinetics of aqueous-phase reforming of oxygenated hydrocarbons: Pt/Al2O3 and Sn-modified Ni catalysts, Ind. Eng. Chem. Res. 43, 12, 3105-3112. [CrossRef]
  • Shabaker J.W., Huber G.W., Dumesic J.A. (2004) Aqueousphase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts, J. Catal. 222, 1, 180-191. [CrossRef]
  • Huber G.W., Shabaker J.W., Dumesic J.A. (2003) Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons, Science 300, 5628, 2075-2077. [CrossRef] [PubMed]
  • Tanksale A., Zhou C.H., Beltramini J.N., Lu G.Q. (2009) Hydrogen production by aqueous phase reforming of sorbitol using bimetallic Ni-Pt catalysts: metal support interaction, J. Incl. Phenom. Macrocyclic Chem. 65, 1-2, 83-88. [CrossRef]
  • Simonetti D.A., Dumesic J.A. (2009) Catalytic production of liquid fuels from biomass-derived hydrocarbons: catalytic coupling at multiple length scales, Catal. Rev. 51, 441-484. [CrossRef]
  • Coll D., Delbecq F., Aray Y., Sautet P. (2011) Stability of intermediates in the glycerol hydrogenolysis on transition metal catalysts from first principles, Phys. Chem. Chem. Phys. 13, 4, 1448-1456. [CrossRef] [PubMed]
  • Zinoviev S., Müller-Langer F., Das P., Bertero N., Fornasiero P., Kaltschmitt M., Centi G., Miertus S. (2010) Next-Generation Biofuels: Survey of Emerging Technologies and Sustainability Issues, ChemSusChem. 3, 10, 1106-1133. [CrossRef] [PubMed]
  • Savage N. (2011) Fuel options: The ideal biofuel, Nature 474, 7352, S9-S11. [CrossRef] [PubMed]
  • Centi G., Lanzafame P., Perathoner S. (2011) Analysis of the alternative routes in the catalytic transformation of lignocellulosic materials, Catal. Today 167, 1, 14-30. [CrossRef]
  • Kumar P., Barrett D.M., Delwiche M.J., Stroeve P. (2009) Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production, Ind. Eng. Chem. Res. 48, 8, 3713-3729. [CrossRef]
  • Corma A., Iborra S., Velty A. (2007) Chemical routes for the transformation of biomass into Chemicals, Chem. Rev. 107, 2411-2502. [CrossRef] [PubMed]
  • Laxman R.S., Lachke A.H. (2009) Bioethanol from lignocellulosic biomass, in Handbook of plant based biofuels, Pandey A. (ed.), CRC Press.
  • Sun Y., Cheng J. (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresour. Technol. 83, 1, 1-11. [CrossRef] [PubMed]
  • Taherzadeh M., Karimi K. (2008) Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review, Int. J. Mol. Sci. 9, 9, 1621-1651. [CrossRef] [PubMed]
  • Delmas M. (2008) Vegetal Refining and Agrochemistry, Chem. Eng. Technol. 31, 5, 792-797. [CrossRef]
  • Lynd L.R., Wyman C.E., Gerngross T.U. (1999) Biocommodity engineering, Biotechnol. Progress 15, 777-793. [CrossRef]
  • Eggeman T., Elander R.T. (2005) Process and economic analysis of pretreatment technologies, Bioresour. Technol. 96, 18, 2019-2025. [CrossRef] [PubMed]
  • Sharma S.K., Kalra K.L., Grewal H.S. (2002) Enzymatic saccharification of pretreated sunflower stalks, Biomass Bioenergy 23, 3, 237-243. [CrossRef]
  • Hayes D.J. (2009) An examination of biorefining processes, catalysts and challenges, Catal. Today 145, 138-151. [CrossRef]
  • http://www1.eere.energy.gov/biomass/fy04/new_sugar_hydrolysis_enzymes.pdf. 2012.
  • Method of producing sugars using strong acid hydrolysis of cellulosic and hemicellulosic materials. Arkenol. US5562777A. 1994.
  • http://www.hclcleantech.com/. 2012.
  • Perego C., Bianchi D. (2010) Biomass upgrading through acidbase catalysis, Chem. Eng. J. 161, 3, 314-322. [CrossRef]
  • http://renmatix.com. 2012.
  • Kusserow B., Schimpf S., Claus P. (2003) Hydrogenation of Glucose to Sorbitol over Nickel and Ruthenium Catalysts, Adv. Synth. Catal. 345, 1-2, 289-299. [CrossRef]
  • Multi-stage aldoses to polyols process. Hydrocarbon research in. US4380678A. 1981.
  • Catalytic hydrogenation of glucose to produce sorbitol. Hydrocarbon research in. US4322569A. 1982.
  • Gallezot P., Nicolaus N., Fleche G., Fuertes P., Perrard A. (1998) Glucose hydrogenation on ruthenium catalysts in a trickle-bed reactor, J. Catal. 180, 1, 51-55. [CrossRef]
  • Ruppert A.M., Weinberg K., Palkovits R. (2012) Hydrogenolysis Goes Bio: From Carbohydrates and Sugar Alcohols to Platform Chemicals, Ang. Chem. Int. Ed. 51, 11, 2564-2601. [CrossRef]
  • Swami S.M., Chaudhari V., Kim D.S., Sim S.J., Abraham M.A. (2007) Production of Hydrogen from Glucose as a Biomass Simulant: Integrated Biological and Thermochemical Approach, Ind. Eng. Chem. Res. 47, 10, 3645-3651. [CrossRef]
  • Blommel P.G., Keenan G.R., Rozmiarek R.T., Cortright R.D. (2008) Catalytic conversion of sugar into conventional gasoline, Diesel, jet fuel, and other hydrocarbons, Int. Sugar J. 110, 1319, 672-679.
  • Kunkes E.L., Simonetti D.A., West R.M., Serrano-Ruiz J.C., Gartner C.A., Dumesic J.A. (2008) Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes, Science 322, 5900, 417-421. [CrossRef] [PubMed]
  • Marcilly C. (2003) Catalyse acido-basique : application au raffinage et à la pétrochimie, Ed. Technip, pp. 338-415.
  • de Klerk A., Leckel D.O., Prinsloo N.M. (2006) Butene Oligomerization by Phosphoric Acid Catalysis: Separating the Effects of Temperature and Catalyst Hydration on Product Selectivity, Ind. Eng. Chem. Res. 45, 18, 6127-6136. [CrossRef]
  • Single-reactor process for producing liquid-phase organic compounds from biomass. US2009255171A. 2009.
  • Rose M., Palkovits R. (2011) Cellulose-Based Sustainable Polymers: State of the Art and Future Trends, Macromol. Rapid Commun. 32, 17, 1299-1311. [CrossRef] [PubMed]
  • Menegassi R., Li J., Nederlof C., O’Connor P., Makkee M., Moulijn J.A. (2010) Cellulose Conversion to Isosorbide in Molten Salt hydrate Media, ChemSusChem. 3, 3, 325-328. [CrossRef] [PubMed]
  • Process for converting polysaccharides in an inorganic molten salt hydrate. BIO-eCON. WO201/106055. 2010.
  • www.virent.com. 2012.
  • Regalbuto J.R. (2009) Cellulosic Biofuels - Got Gasoline?, Science 325, 5942, 822-824. [CrossRef] [PubMed]
  • Davda R.R., Dumesic J.A. (2004) Renewable hydrogen by aqueous-phase reforming of glucose, Chem. Commun. 1, 36-37. [CrossRef]
  • Liu J., Chu X., Zhu L., Hu J., Dai R., Xie S., Pei Y., Yan S., Qiao M., Fan K. (2010) Simultaneous Aqueous-Phase Reforming and KOH Carbonation to Produce COx-Free Hydrogen in a Single Reactor, ChemSuschem. 3, 7, 803-806. [CrossRef] [PubMed]
  • James O.O., Maity S., Mesubi M.A., Ogunniran K.O., Siyanbola T.O., Sahu S., Chaubey R. (2011) Towards reforming technologies for production of hydrogen exclusively from renewable resources, Green Chem. 13, 9, 2272-2284. [CrossRef]
  • Komula D. (2011) Completing the Puzzle: 100% Plant-Derived PET, Bioplastics Magazine 6.
  • Keenan G. (2010) The World Congress on Industrial Biotechnology and Bioprocessing, Washington, 27-30 June.
  • Chen N.Y., Degnan T.F., Koenig L.R. (1986) Liquid fuels from carbohydrates, Chemtech. 16, 506-511.
  • Carlson T.R., Tompsett G.A., Conner W.C., Huber G.W. (2009) Aromatic Production from Catalytic Fast Pyrolysis of Biomass-Derived Feedstocks, Topics Catal. 52, 3, 241-252. [CrossRef]
  • Wen G., Xu Y., Xu Z., Tian Z. (2010) Direct conversion of cellulose into hydrogen by aqueous-phase reforming process, Catal. Commun. 11, 6, 522-526.
  • Conversion of carbohydrates to hydrocarbons. Conocophillips. WO2011/078909. 2011.
  • Zhao C., Lercher J.A. (2012) Upgrading Pyrolysis Oil over Ni/HZSM-5 by cascade Reactions, Ang. Chem. Int. Ed. 51, 1-7. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.