Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 4, July-August 2013
Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Page(s) 753 - 763
DOI https://doi.org/10.2516/ogst/2013132
Published online 01 October 2013
  • Dimmel D. (2010) Overview in Lignins and Lignans: Advances in Chemistry, Heitner C., Dimmel D.R., Schmidt J.A. (eds), Taylor and Francis, pp. 1-10.
  • Parthasarathi R., Romero R.A., Redondo A., Gnanakaran S. (2011) Theoretical Study of the Remarkably Diverse Linkages in Lignin, J. Phys. Chem. Lett. 2, 2660-2666. [CrossRef]
  • Buranov A.U., Mazza G. (2008) Lignin in straw of herbaceous crops, Ind. Crops Prod. 28, 237-259. [CrossRef]
  • Lapierre C., Pollet B., Rolando C. (1995) New insights into the molecular architecture of hardwood lignins by chemical degradative methods, Res. Chem. Intermed. 21, 3-5, 397-412. [CrossRef]
  • Billa E., Koukios E.G., Monties B. (1998) Investigation of lignins structure in cereal crops by chemical degradation methods, Polym. Degrad. Stab. 59, 71-75. [CrossRef]
  • Gosselink R.J.A., de Jong E., Guran B., Abacherli A. (2004) Co-ordination network for lignin-standardisation production and applications adapted to market requirements (EUROLIGNIN), Ind. Crops Products 20, 121-129. [CrossRef]
  • Soccol C.R., Faraco V., Karp S., Vandenberghe L.P.S., Thomaz-Soccol V., Woiciechowski A., Pandey A. (2011) Lignocellulosic Bioethanol: Current Status and Future Perspectives in Biofuels, Pandey A., Larroche C., Ricke S.C., Dussap C.-G., Gnansounou E. (eds), Academic Press, Elsevier, Section II, Chapter 5.
  • Kleinert M., Barth T. (2008) Phenols from Lignin, Chem. Eng. Technol. 31, 5, 736-745. [CrossRef]
  • Thring R.W., Katikaneni S.P.R., Bakhshi N.N. (2000) The production of gasoline range hydrocarbons from Alcell lignin using HZSM-5 catalyst, Fuel Process. Technol. 62, 17-30. [CrossRef]
  • Gellerstedt G., Li J., Eide I., Kleinert M., Barth T. (2008) Chemical Structures Present in Biofuel Obtained from Lignin, Energy Fuels 22, 4240-4244. [CrossRef]
  • Goheen D.W. (1966) Hydrogenation of lignin by the Noguchi process, Adv. Chem. Ser. 59, 205-225. [CrossRef]
  • Huibers D.T.A., Jones M.W. (1980) Fuel and Chemical feedstocks from lignocellulosic biomass, Can. J. Chem. Eng. 58, 718-722.
  • de Wild P., Van der Laan R., Kloekhorst A., Heeres E. (2009) Lignin valorisation for chemicals and (transportation) fuels via (catalytic) pyrolysis and hydrodeoxygenation, Environ. Prog. Sustainable Energy 28, 461-469. [CrossRef]
  • Demirbas A. (2009) Biorefineries: current activities and future developments, Energy Convers. Manage. 50, 2782-2801. [CrossRef]
  • Zakzeski J., Bruijnincx P.C.A., Jongerius A.L., Weckhuysen B.M. (2010) The catalytic valorization of lignin for the production of renewable chemicals, Chem. Rev. 110, 3552-3599. [CrossRef] [PubMed]
  • Vasile C., Popescu M.C., Stolerium A., Gosselink R. (2006) in New Trends in Natural and Synthetic Polymer Science, Vasile C., Zaikov G. (eds), Nova Science, New York, pp. 135-163.
  • Faix O., Meier D., Grobe I. (1987) Studies on isolated lignins and lignins in woody materials by pyrolysis-gas chromatography-mass spectrometry and off-line pyrolysis-gas chromatography with flame ionization detection, J. Anal. Appl. Pyrolysis 11, 403-416. [CrossRef]
  • Gellerstedt G. (1992) Methods in Lignin Chemistry, Lin S. Y., Dense C.W. (eds), Springer, Berlin, Chapter 8.1. Gel Permeation Chromatography, p. 487.
  • Jasiukaityte E., Kunaver M., Crestini C. (2010) Lignin behaviour during wood liquefaction-Characterization by quantitative 31P, 13C NMR and size-exclusion chromatography, Catal. Today 156, 23-30. [CrossRef]
  • Ralph J., Landucci L.L. (2010) NMR of lignins in Lignins and Lignans: Advances in Chemistry, Heitner C., Dimmel D.R., Schmidt J.A. (eds), Taylor and Francis, pp. 137-222.
  • Sette M., Wechselberger R., Crestini C. (2011) Elucidation of Lignin Structure by Quantitative 2D NMR, Chem. Eur. J. 17, 9529-9535. [CrossRef]
  • Crestini C., Sermanni G.G., Argyropoulos D.S. (1998) Phosphitylation, Bioorganic Medicinal Chem. 6, 967. [CrossRef]
  • Haw J.F., Schultz T.P. (1985) C13CP/MAS NMR and FTIR study of low temperature lignin pyrolysis, Holzforschung 39, 289-296. [CrossRef]
  • Bayerbach R., Nguyen V.D., Schurr U., Meier D. (2006) Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin) Part III. Molar mass characteristics by SEC, MALDI-TOF-MS, LDITOF-MS, and Py-FIMS, J. Anal. Appl. Pyrolysis 77, 95-101. [CrossRef]
  • Babu B.V. (2008) Biomass pyrolysis: a state-of-the-art review, Biofuels Bioprod. Bior. 2, 393-414. [CrossRef]
  • Bridgwater A.V., Peacocke G.V.C. (2000) Fast pyrolysis processes for biomass, Renew. Sust. Energ. Rev. 4, 1-73. [CrossRef]
  • Li Xiangyu, Su Lu, Wang Yujue, Yu Yanqing, Wang Chengwen, Xiaoliang Li, Zhihua Wang (2012) Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons, Frontiers Environ. Sci. Eng. 6, 3, 295-303.
  • Kaminsky W., Schweers W., Schwesinger H. (1980) Properties and decomposition of lignins isolated by means of an alcoholic-water-mixture, Holzforschung 34, 73-76. [CrossRef]
  • Chen C.A., Pakdel H., Roy C. (2001) Production of monomeric phenols by thermochemical conversion of biomass: a review, Bioressource Technol. 79, 277-299. [CrossRef]
  • Dorrestin E., Laarhoven L.J.J., Arends I.W.C.E., Mulder P. (2000) The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal, J. Anal. Appl. Pyrolysis 54, 153-192. [CrossRef]
  • Jegers H.E., Klein M.T. (1985) Primary and secondary lignin pyrolysis reaction pathways, Ind. Eng. Chem. Process Des. Dev. 24, 173-183. [CrossRef]
  • Mullen C.A., Boateng A.A. (2010) Catalytic pyrolysis-GC/ MS of lignin from several sources, Fuel Process. Technol. 91, 1446-1458. [CrossRef]
  • Meier D., Ante R., Faix O. (1992) Catalytic hydropyrolysis of lignin: influence of reactions conditions on the formation and composition of liquid products, Bioressource. Technol. 40, 171-177. [CrossRef]
  • Meier D., Berns J., Grunwald C., Faix O. (1993) Analytical pyrolysis and semicontinuous catalytic hydropyrolysis of Organocell lignin, J. Anal. Appl. Pyrolysis 25, 335-347. [CrossRef]
  • Mullen C.A., Boateng A.A. (2010) Catalytic pyrolysis-GC/ MS of lignin from several sources, Fuel Process. Technol. 91, 1446-1458. [CrossRef]
  • Ma Z., Troussard E., van Bokhoven J.A. (2012) Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis, Appl. Catal. A: Gen. 423-424, 130-136. [CrossRef]
  • Ben H., Ragauskas A.J. (2011) Pyrolysis of Kraft Lignin with Additives, Energy Fuels 25, 10, 4662-4668. [CrossRef]
  • Mukkamala S., Wheeler M.C., van Heiningen A.R.P., DeSisto W.J. (2012) Formate-Assisted Fast Pyrolysis of Lignin, Energy Fuels 26, 2, 1380-1384. [CrossRef]
  • Patwardhan P.R., Brown R.C., Shanks B.H. (2011) Understanding the fast pyrolysis of lignin, ChemSusChem 4, 1629-1636. [CrossRef] [PubMed]
  • Scott D.S., Majerski P., Piskorz J., Radlein D. (1999) A second look at fast pyrolysis of biomass - The RTI process, J. Anal. Appl. Pyrolysis 51, 23-37. [CrossRef]
  • Nowakowski D.J., Bridgwater A.V., Elliott D.C., Meier D., de Wild P. (2010) Lignin fast pyrolysis: Results from an international collaboration, J. Anal. Appl. Pyrolysis 88, 53-72. [CrossRef]
  • de Wild P.J., Huijgen W.J.J., Heeres H.J. (2012) Pyrolysis of wheat straw-dreived organosolv lignin, J. Anal. Appl. Pyrolysis 93, 95-103. [CrossRef]
  • Curran G.P., Struck R.T., Gorin E. (1967) Mechanism of the hydrogen transfert process to coal and coal extract, Ind. Eng. Chem. Process Des. Dev. 6, 2, 166-173. [CrossRef]
  • Connors W.J., Johanson L.N., Sarkanen K.V., Winslow P. (1980) Thermal degradation of Kraft Lignin in Tetralin, Holzforschung 34, 1, 29-37. [CrossRef]
  • Vuori A., Bredenberg J.B. (1988) Liquefaction of Kraft Lignin, I: Primary reactions under mild thermolysis conditions, Holzforschung 42, 3, 155-161. [CrossRef]
  • Jegers H.E., Klein M.T. (1985) Primary and secondary lignin pyrolysis reaction pathways, Ind. Eng. Chem. Process Des. Dev. 24, 1, 173-183. [CrossRef]
  • Vuori A., Bredenberg J. (1984) Hydrolysis and hydrocracking of the carbon-oxygen bond. 4. Thermal and catalytic hydrogenolysis of 4-propylguaiacol, Holzforschung 38, 3, 133-140. [CrossRef]
  • Vuori A. (1986) Thermal and catalytic reactions of the C-O bond in lignin and coal related aromatic methyl ethers, Acta Polytech. Sc. Chem. Met. 176, 31.
  • Kleinert M., Gasson J.R., Barth T. (2009) Optimizing solvolysis conditions for integrated depolymerisation and hydrodeoxygenation of lignin to produce liquid biofuel, J. Anal. Appl. Pyrolysis 85, 1-2, 108-117. [CrossRef]
  • Yu J., Savage P. (1998) Decomposition of formic acid under hydrothermal conditions, Ind. Eng. Chem. Res. 37, 2-10. [CrossRef]
  • Kleinert M., Barth T. (2008) Towards a Lignincellulosic Biorefinery: Direct One-Step Conversion of Lignin to Hydrogen-Enriched Biofuel, Energy Fuels 22, 1371-1379. [CrossRef]
  • Weiyin Xu, Miller S.J., Agrawal P.K., Jones C.W. (2012) Depolymerization and Hydrodeoxygenation of Switch- grass Lignin with Formic Acid, ChemSusChem 5, 667-675. [CrossRef] [PubMed]
  • Lautsch W., Freudenberg K. (1943) Phenol or its derivatives from lignin or ligneous materials, Patent DE 741686.
  • Toor S.S., Rosendahl L., Rudolf A. (2011) Hydrothermal liquefaction of biomass: A review of subcritical water, Technologies Energy 36, 5, 2328-2342.
  • Hunter S.E., Savage P.E. (2004) Recent advances in acid- and base-catalyzed organic synthesis in high-temperature liquid water, Chem. Eng. Sci. 59, 22-23, 4903-4909. [CrossRef]
  • Pinkowska H., Wolak P., Zocinska A. (2012) Hydrothermal decomposition of alkali lignin in sub- and supercritical water, Chem. Eng. J. 187, 410-414. [CrossRef]
  • Wahyudiono, Sasaki M., Goto M. (2008) Recovery of phenolic compounds through the decomposition of lignin in near and supercritical water, Chem. Eng. Process. 47, 9-10,1609-1619. [CrossRef]
  • Ochi M., Kotsuki H., Kanahara S., Yamasaki N., Matsuoka K. (1984) Hydrothermal degradation of lignin, Rep. Research Lab. Hydrothermal Chem. 5, 4-8, 37-41.
  • Funazukuri T., Wakao N., Smith J.M. (1990) Liquefaction of lignin sulfonate with subcritical and supercritical water, Fuel 69, 3, 349-353. [CrossRef]
  • Zhang B., Huang H.J., Ramaswamy S. (2008) Reaction kinetics of the hydrothermal treatment of lignin, Appl. Biochem. Biotech. 147, 1-3, 119-131. [CrossRef]
  • Barbier J., Charon N., Dupassieux N., Loppinet-Serani A., Mahé L., Ponthus J., Courtiade M., Ducrozet A., Quoineaud A.A., Cansell F. (2012) Hydrothermal conversion of lignin compounds. A detailed study of fragmentation and condensation reaction pathways, Biomass Bioenergy, 46, 479-491. [CrossRef]
  • Bobleter O. (1994) Hydrothermal degradation of polymers derived from plants, Prog. Polym. Sci. 19, 5, 797-841. [CrossRef]
  • Oasmaa A., Johansson A. (1993) Catalytic hydrotreating of lignin with water-soluble molybdenum catalyst, Energy Fuels 7, 3, 426-429. [CrossRef]
  • Jin F., Zeng X., Jing Z., Enomoto H. (2012) A potentially useful technology by mimicking nature-rapid conversion of biomass and CO2 into chemicals and fuels under hydrothermal conditions, Ind. Eng. Chem. Res. 51, 30, 9921-9937. [CrossRef]
  • Ramsurn H., Gupta R.B. (2012) Production of Biocrude from Biomass by Acidic Subcritical Water Followed by Alkaline Supercritical Water Two-Step Liquefaction, Energy Fuels 26, 4, 2365-2375. [CrossRef]
  • Saisu M., Sato T., Watanabe M., Adschiri T., Arai K. (2003) Conversion of lignin with supercritical water-phenol mixtures, Energy Fuels 17, 4, 922-928. [CrossRef]
  • Okuda K., Umetsu M., Takami S., Adschiri T. (2004) Disassembly of lignin and chemical recovery-rapid depolymerization of lignin without char formation in water-phenol mixtures, Fuel Process Technol. 85, 8-10, 803-813. [CrossRef]
  • Fang Z., Sato T., Smith Jr R.L., Inomata H., Arai K., Kozinski J.A. (2008) Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water, Bioresour. Technol. 99, 9, 3424-3430. [CrossRef] [PubMed]
  • Yuan Z., Cheng S., Leitch M., Xu C. (2010) Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol, Bioresour. Technol. 101, 23, 9308-9313. [CrossRef] [PubMed]
  • Cheng S., Wilks C., Yuan Z., Leitch M., Xu C. (2012) Hydrothermal degradation of alkali lignin to bio-phenolic compounds in sub/supercritical ethanol and water-ethanol co-solvent, Polym. Degrad. Stab. 97, 6, 839-848. [CrossRef]
  • Ye Y., Zhang Y., Fan J., Chang J. (2012) Selective production of 4-ethylphenolics from lignin via mild hydrogenolysis, Bioresour. Technol. 118, 648-651. [CrossRef] [PubMed]
  • Gosselink R.J.A., Teunissen W., van Dam J.E.G., de Jong E., Gellerstedt G., Scott E.L., Sanders J.P.M. (2012) Lignin depolymerisation in supercritical carbon dioxide/acetone/ water fluid for the production of aromatic chemicals, Bioresour. Technol. 106, 173-177. [CrossRef] [PubMed]
  • Liguori L., Barth T. (2011) Palladium-Nafion SAC-13 catalysed depolymerisation of lignin to phenols in formic acid and water, J. Anal. Appl. Pyrolysis 92, 2, 477-484. [CrossRef]
  • Zakzeski J., Weckhuysen B.M. (2011) Lignin solubilization and aqueous phase reforming for the production of aromatics chemicals and hydrogen, ChemSusChem 4, 369-378. [CrossRef] [PubMed]
  • Roberts V.M., Stein V., Reiner T., Lemonidou A., Li X., Lercher J.A. (2011) Towards Quantitative Catalytic Lignin Depolymerization, Chem. Eur. J. 17, 5939-5948. [CrossRef]
  • McMillen D.F., Malhotra R., Tse D.S. (1991) Interactive effects between solvent components: possible chemical origin of synergy in liquefaction and coprocessing, Energy Fuels 5, 179-187. [CrossRef]
  • Oasmaa A., Alen R., Meier D. (1993) Catalytic hydrotreatment of some technical lignins, Bioresour. Technol. 45, 189-194. [CrossRef]
  • Yan N., Zhao C., Dyson P.J., Wang C., Liu L.-t., Kou Y. (2008) Selective Degradation of Wood Lignin over Noble- Metal Catalysts in a Two-Step Process, ChemSusChem 1, 626-629. [CrossRef] [PubMed]
  • deWild P., Van der Laan R., Kloeekhorst A., Heeres E. (2009) Lignin Valorization for Chemicals and (Transportation) Fuels via Catalytic Pyrolysis and Hydrodeoxygenation, Env. Prog. Sustain. Energy 28, 461-469. [CrossRef]
  • Thring R.W., Breau J. (1996) Hydrocracking of solvolysis lignin in a batch reactor, Fuel 75, 7, 795-800. [CrossRef]
  • Elliott D.C., Baker E.G. (1984) Upgrading Biomass Liquefaction Products through Hydrodeoxygenation, Biotechnol. Bioeng. Symp. 14, 159-174.
  • Grange P., Burton A., de Zutter D., Churin E., Poncelet G., Delmon B. (1987) Catalytic hydroliquefactionof biomass. Influence of sulphur on products distribution, in Biomass for Energy and Industry, Grassi G., Delmon B., Molle J.-F., Zibette H. (eds), Elsevier Applied Science, London, pp. 1123-1127.
  • Meier D., Berns J., Faix O., Balfanz U., Baldauf W. (1994) Hydrocracking of organocell lignin for phenol production, Biomass Bioenergy 7, 99-105. [CrossRef]
  • Horacek J., Homola F., Kubickova I., Kubicka D. (2012) Lignin to liquids over sulfided catalysts, Catal. Today 179, 191-198. [CrossRef]
  • Chum H.L., Johnson D.K., Black S., Ratcliff M., Goheen D.W. (1988) Lignin hydrotreatment to low-molecularweight compounds, Adv. Sol. Energy 4, 91-200. [CrossRef]
  • Jonhson D.K., Chum H.L., Anzick R., Baldwin R.M. (1990) Preparation of a Lignin-Derived Pasting Oil, Appl. Biochem. Biotech. 24/25, 31-40. [CrossRef]
  • Ratcliff M.A., Johnson D.K., Posey F.L., Chum H.L. (1988) Hydrodeoxygenation of lignins and model compounds, Appl. Biochem. Biotech. 17, 151-160. [CrossRef]
  • Schuchardt U., Marangoni Borges O.A. (1989) Direct liquefaction of hydrolytic eucaliptus lignin in the presence of sulphided iron catalysts, Catal. Today 5, 523-531. [CrossRef]
  • Joffres B., Lorentz C., Vidalie M., Laurenti D., Quoineaud A.-A., Charon N., Daudin A., Quignard A., Geantet C. (2013) Catalytic hydroconversion of a wheat straw soda lignin: characterization of the products and the lignin residue, Appl. Catal. B: Environ. http://dx.doi.org/10.1016/j.apcatb.2013.01.039.
  • Engel D.J., Steigleder K.Z. (1987) Hydrocracking process for liquefaction of lignin, UOP US Patent 4,647,704, March.
  • Urban P., Engel D.J. (1988) Process for liquefaction of lignin, UOP US Patent 4,731,491, March.
  • Shabtai J.S., Zmierczak W.W., Chornet E. (2001) Process for conversion of lignin to reformulated, partially oxygenated gasoline, Patent US 6,172,272 B1, January.
  • Shabtai J.S., Zmierczak W.W., Chornet E., Jonhson D. (2003) Process for converting lignins into a high octane additive, Patent US 2003/0100807 Al, May.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.