Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 4, July-August 2013
Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Page(s) 753 - 763
DOI https://doi.org/10.2516/ogst/2013132
Published online 01 October 2013
  • Dimmel D. (2010) Overview in Lignins and Lignans: Advances in Chemistry, Heitner C., Dimmel D.R., Schmidt J.A. (eds), Taylor and Francis, pp. 1-10. [Google Scholar]
  • Parthasarathi R., Romero R.A., Redondo A., Gnanakaran S. (2011) Theoretical Study of the Remarkably Diverse Linkages in Lignin, J. Phys. Chem. Lett. 2, 2660-2666. [CrossRef] [Google Scholar]
  • Buranov A.U., Mazza G. (2008) Lignin in straw of herbaceous crops, Ind. Crops Prod. 28, 237-259. [CrossRef] [Google Scholar]
  • Lapierre C., Pollet B., Rolando C. (1995) New insights into the molecular architecture of hardwood lignins by chemical degradative methods, Res. Chem. Intermed. 21, 3-5, 397-412. [CrossRef] [Google Scholar]
  • Billa E., Koukios E.G., Monties B. (1998) Investigation of lignins structure in cereal crops by chemical degradation methods, Polym. Degrad. Stab. 59, 71-75. [CrossRef] [Google Scholar]
  • Gosselink R.J.A., de Jong E., Guran B., Abacherli A. (2004) Co-ordination network for lignin-standardisation production and applications adapted to market requirements (EUROLIGNIN), Ind. Crops Products 20, 121-129. [CrossRef] [Google Scholar]
  • Soccol C.R., Faraco V., Karp S., Vandenberghe L.P.S., Thomaz-Soccol V., Woiciechowski A., Pandey A. (2011) Lignocellulosic Bioethanol: Current Status and Future Perspectives in Biofuels, Pandey A., Larroche C., Ricke S.C., Dussap C.-G., Gnansounou E. (eds), Academic Press, Elsevier, Section II, Chapter 5. [Google Scholar]
  • Kleinert M., Barth T. (2008) Phenols from Lignin, Chem. Eng. Technol. 31, 5, 736-745. [CrossRef] [Google Scholar]
  • Thring R.W., Katikaneni S.P.R., Bakhshi N.N. (2000) The production of gasoline range hydrocarbons from Alcell lignin using HZSM-5 catalyst, Fuel Process. Technol. 62, 17-30. [CrossRef] [Google Scholar]
  • Gellerstedt G., Li J., Eide I., Kleinert M., Barth T. (2008) Chemical Structures Present in Biofuel Obtained from Lignin, Energy Fuels 22, 4240-4244. [CrossRef] [Google Scholar]
  • Goheen D.W. (1966) Hydrogenation of lignin by the Noguchi process, Adv. Chem. Ser. 59, 205-225. [CrossRef] [Google Scholar]
  • Huibers D.T.A., Jones M.W. (1980) Fuel and Chemical feedstocks from lignocellulosic biomass, Can. J. Chem. Eng. 58, 718-722. [Google Scholar]
  • de Wild P., Van der Laan R., Kloekhorst A., Heeres E. (2009) Lignin valorisation for chemicals and (transportation) fuels via (catalytic) pyrolysis and hydrodeoxygenation, Environ. Prog. Sustainable Energy 28, 461-469. [CrossRef] [Google Scholar]
  • Demirbas A. (2009) Biorefineries: current activities and future developments, Energy Convers. Manage. 50, 2782-2801. [CrossRef] [Google Scholar]
  • Zakzeski J., Bruijnincx P.C.A., Jongerius A.L., Weckhuysen B.M. (2010) The catalytic valorization of lignin for the production of renewable chemicals, Chem. Rev. 110, 3552-3599. [CrossRef] [PubMed] [Google Scholar]
  • Vasile C., Popescu M.C., Stolerium A., Gosselink R. (2006) in New Trends in Natural and Synthetic Polymer Science, Vasile C., Zaikov G. (eds), Nova Science, New York, pp. 135-163. [Google Scholar]
  • Faix O., Meier D., Grobe I. (1987) Studies on isolated lignins and lignins in woody materials by pyrolysis-gas chromatography-mass spectrometry and off-line pyrolysis-gas chromatography with flame ionization detection, J. Anal. Appl. Pyrolysis 11, 403-416. [CrossRef] [Google Scholar]
  • Gellerstedt G. (1992) Methods in Lignin Chemistry, Lin S. Y., Dense C.W. (eds), Springer, Berlin, Chapter 8.1. Gel Permeation Chromatography, p. 487. [Google Scholar]
  • Jasiukaityte E., Kunaver M., Crestini C. (2010) Lignin behaviour during wood liquefaction-Characterization by quantitative 31P, 13C NMR and size-exclusion chromatography, Catal. Today 156, 23-30. [CrossRef] [Google Scholar]
  • Ralph J., Landucci L.L. (2010) NMR of lignins in Lignins and Lignans: Advances in Chemistry, Heitner C., Dimmel D.R., Schmidt J.A. (eds), Taylor and Francis, pp. 137-222. [Google Scholar]
  • Sette M., Wechselberger R., Crestini C. (2011) Elucidation of Lignin Structure by Quantitative 2D NMR, Chem. Eur. J. 17, 9529-9535. [CrossRef] [Google Scholar]
  • Crestini C., Sermanni G.G., Argyropoulos D.S. (1998) Phosphitylation, Bioorganic Medicinal Chem. 6, 967. [CrossRef] [Google Scholar]
  • Haw J.F., Schultz T.P. (1985) C13CP/MAS NMR and FTIR study of low temperature lignin pyrolysis, Holzforschung 39, 289-296. [CrossRef] [Google Scholar]
  • Bayerbach R., Nguyen V.D., Schurr U., Meier D. (2006) Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin) Part III. Molar mass characteristics by SEC, MALDI-TOF-MS, LDITOF-MS, and Py-FIMS, J. Anal. Appl. Pyrolysis 77, 95-101. [CrossRef] [Google Scholar]
  • Babu B.V. (2008) Biomass pyrolysis: a state-of-the-art review, Biofuels Bioprod. Bior. 2, 393-414. [CrossRef] [Google Scholar]
  • Bridgwater A.V., Peacocke G.V.C. (2000) Fast pyrolysis processes for biomass, Renew. Sust. Energ. Rev. 4, 1-73. [CrossRef] [Google Scholar]
  • Li Xiangyu, Su Lu, Wang Yujue, Yu Yanqing, Wang Chengwen, Xiaoliang Li, Zhihua Wang (2012) Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons, Frontiers Environ. Sci. Eng. 6, 3, 295-303. [Google Scholar]
  • Kaminsky W., Schweers W., Schwesinger H. (1980) Properties and decomposition of lignins isolated by means of an alcoholic-water-mixture, Holzforschung 34, 73-76. [CrossRef] [Google Scholar]
  • Chen C.A., Pakdel H., Roy C. (2001) Production of monomeric phenols by thermochemical conversion of biomass: a review, Bioressource Technol. 79, 277-299. [CrossRef] [Google Scholar]
  • Dorrestin E., Laarhoven L.J.J., Arends I.W.C.E., Mulder P. (2000) The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal, J. Anal. Appl. Pyrolysis 54, 153-192. [CrossRef] [Google Scholar]
  • Jegers H.E., Klein M.T. (1985) Primary and secondary lignin pyrolysis reaction pathways, Ind. Eng. Chem. Process Des. Dev. 24, 173-183. [CrossRef] [Google Scholar]
  • Mullen C.A., Boateng A.A. (2010) Catalytic pyrolysis-GC/ MS of lignin from several sources, Fuel Process. Technol. 91, 1446-1458. [CrossRef] [Google Scholar]
  • Meier D., Ante R., Faix O. (1992) Catalytic hydropyrolysis of lignin: influence of reactions conditions on the formation and composition of liquid products, Bioressource. Technol. 40, 171-177. [CrossRef] [Google Scholar]
  • Meier D., Berns J., Grunwald C., Faix O. (1993) Analytical pyrolysis and semicontinuous catalytic hydropyrolysis of Organocell lignin, J. Anal. Appl. Pyrolysis 25, 335-347. [CrossRef] [Google Scholar]
  • Mullen C.A., Boateng A.A. (2010) Catalytic pyrolysis-GC/ MS of lignin from several sources, Fuel Process. Technol. 91, 1446-1458. [CrossRef] [Google Scholar]
  • Ma Z., Troussard E., van Bokhoven J.A. (2012) Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis, Appl. Catal. A: Gen. 423-424, 130-136. [CrossRef] [Google Scholar]
  • Ben H., Ragauskas A.J. (2011) Pyrolysis of Kraft Lignin with Additives, Energy Fuels 25, 10, 4662-4668. [CrossRef] [Google Scholar]
  • Mukkamala S., Wheeler M.C., van Heiningen A.R.P., DeSisto W.J. (2012) Formate-Assisted Fast Pyrolysis of Lignin, Energy Fuels 26, 2, 1380-1384. [CrossRef] [Google Scholar]
  • Patwardhan P.R., Brown R.C., Shanks B.H. (2011) Understanding the fast pyrolysis of lignin, ChemSusChem 4, 1629-1636. [CrossRef] [PubMed] [Google Scholar]
  • Scott D.S., Majerski P., Piskorz J., Radlein D. (1999) A second look at fast pyrolysis of biomass - The RTI process, J. Anal. Appl. Pyrolysis 51, 23-37. [CrossRef] [Google Scholar]
  • Nowakowski D.J., Bridgwater A.V., Elliott D.C., Meier D., de Wild P. (2010) Lignin fast pyrolysis: Results from an international collaboration, J. Anal. Appl. Pyrolysis 88, 53-72. [CrossRef] [Google Scholar]
  • de Wild P.J., Huijgen W.J.J., Heeres H.J. (2012) Pyrolysis of wheat straw-dreived organosolv lignin, J. Anal. Appl. Pyrolysis 93, 95-103. [CrossRef] [Google Scholar]
  • Curran G.P., Struck R.T., Gorin E. (1967) Mechanism of the hydrogen transfert process to coal and coal extract, Ind. Eng. Chem. Process Des. Dev. 6, 2, 166-173. [CrossRef] [Google Scholar]
  • Connors W.J., Johanson L.N., Sarkanen K.V., Winslow P. (1980) Thermal degradation of Kraft Lignin in Tetralin, Holzforschung 34, 1, 29-37. [CrossRef] [Google Scholar]
  • Vuori A., Bredenberg J.B. (1988) Liquefaction of Kraft Lignin, I: Primary reactions under mild thermolysis conditions, Holzforschung 42, 3, 155-161. [CrossRef] [Google Scholar]
  • Jegers H.E., Klein M.T. (1985) Primary and secondary lignin pyrolysis reaction pathways, Ind. Eng. Chem. Process Des. Dev. 24, 1, 173-183. [CrossRef] [Google Scholar]
  • Vuori A., Bredenberg J. (1984) Hydrolysis and hydrocracking of the carbon-oxygen bond. 4. Thermal and catalytic hydrogenolysis of 4-propylguaiacol, Holzforschung 38, 3, 133-140. [CrossRef] [Google Scholar]
  • Vuori A. (1986) Thermal and catalytic reactions of the C-O bond in lignin and coal related aromatic methyl ethers, Acta Polytech. Sc. Chem. Met. 176, 31. [Google Scholar]
  • Kleinert M., Gasson J.R., Barth T. (2009) Optimizing solvolysis conditions for integrated depolymerisation and hydrodeoxygenation of lignin to produce liquid biofuel, J. Anal. Appl. Pyrolysis 85, 1-2, 108-117. [CrossRef] [Google Scholar]
  • Yu J., Savage P. (1998) Decomposition of formic acid under hydrothermal conditions, Ind. Eng. Chem. Res. 37, 2-10. [CrossRef] [Google Scholar]
  • Kleinert M., Barth T. (2008) Towards a Lignincellulosic Biorefinery: Direct One-Step Conversion of Lignin to Hydrogen-Enriched Biofuel, Energy Fuels 22, 1371-1379. [CrossRef] [Google Scholar]
  • Weiyin Xu, Miller S.J., Agrawal P.K., Jones C.W. (2012) Depolymerization and Hydrodeoxygenation of Switch- grass Lignin with Formic Acid, ChemSusChem 5, 667-675. [CrossRef] [PubMed] [Google Scholar]
  • Lautsch W., Freudenberg K. (1943) Phenol or its derivatives from lignin or ligneous materials, Patent DE 741686. [Google Scholar]
  • Toor S.S., Rosendahl L., Rudolf A. (2011) Hydrothermal liquefaction of biomass: A review of subcritical water, Technologies Energy 36, 5, 2328-2342. [Google Scholar]
  • Hunter S.E., Savage P.E. (2004) Recent advances in acid- and base-catalyzed organic synthesis in high-temperature liquid water, Chem. Eng. Sci. 59, 22-23, 4903-4909. [CrossRef] [Google Scholar]
  • Pinkowska H., Wolak P., Zocinska A. (2012) Hydrothermal decomposition of alkali lignin in sub- and supercritical water, Chem. Eng. J. 187, 410-414. [CrossRef] [Google Scholar]
  • Wahyudiono, Sasaki M., Goto M. (2008) Recovery of phenolic compounds through the decomposition of lignin in near and supercritical water, Chem. Eng. Process. 47, 9-10,1609-1619. [CrossRef] [Google Scholar]
  • Ochi M., Kotsuki H., Kanahara S., Yamasaki N., Matsuoka K. (1984) Hydrothermal degradation of lignin, Rep. Research Lab. Hydrothermal Chem. 5, 4-8, 37-41. [Google Scholar]
  • Funazukuri T., Wakao N., Smith J.M. (1990) Liquefaction of lignin sulfonate with subcritical and supercritical water, Fuel 69, 3, 349-353. [CrossRef] [Google Scholar]
  • Zhang B., Huang H.J., Ramaswamy S. (2008) Reaction kinetics of the hydrothermal treatment of lignin, Appl. Biochem. Biotech. 147, 1-3, 119-131. [CrossRef] [Google Scholar]
  • Barbier J., Charon N., Dupassieux N., Loppinet-Serani A., Mahé L., Ponthus J., Courtiade M., Ducrozet A., Quoineaud A.A., Cansell F. (2012) Hydrothermal conversion of lignin compounds. A detailed study of fragmentation and condensation reaction pathways, Biomass Bioenergy, 46, 479-491. [CrossRef] [Google Scholar]
  • Bobleter O. (1994) Hydrothermal degradation of polymers derived from plants, Prog. Polym. Sci. 19, 5, 797-841. [CrossRef] [Google Scholar]
  • Oasmaa A., Johansson A. (1993) Catalytic hydrotreating of lignin with water-soluble molybdenum catalyst, Energy Fuels 7, 3, 426-429. [CrossRef] [Google Scholar]
  • Jin F., Zeng X., Jing Z., Enomoto H. (2012) A potentially useful technology by mimicking nature-rapid conversion of biomass and CO2 into chemicals and fuels under hydrothermal conditions, Ind. Eng. Chem. Res. 51, 30, 9921-9937. [CrossRef] [Google Scholar]
  • Ramsurn H., Gupta R.B. (2012) Production of Biocrude from Biomass by Acidic Subcritical Water Followed by Alkaline Supercritical Water Two-Step Liquefaction, Energy Fuels 26, 4, 2365-2375. [CrossRef] [Google Scholar]
  • Saisu M., Sato T., Watanabe M., Adschiri T., Arai K. (2003) Conversion of lignin with supercritical water-phenol mixtures, Energy Fuels 17, 4, 922-928. [CrossRef] [Google Scholar]
  • Okuda K., Umetsu M., Takami S., Adschiri T. (2004) Disassembly of lignin and chemical recovery-rapid depolymerization of lignin without char formation in water-phenol mixtures, Fuel Process Technol. 85, 8-10, 803-813. [CrossRef] [Google Scholar]
  • Fang Z., Sato T., Smith Jr R.L., Inomata H., Arai K., Kozinski J.A. (2008) Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water, Bioresour. Technol. 99, 9, 3424-3430. [CrossRef] [PubMed] [Google Scholar]
  • Yuan Z., Cheng S., Leitch M., Xu C. (2010) Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol, Bioresour. Technol. 101, 23, 9308-9313. [CrossRef] [PubMed] [Google Scholar]
  • Cheng S., Wilks C., Yuan Z., Leitch M., Xu C. (2012) Hydrothermal degradation of alkali lignin to bio-phenolic compounds in sub/supercritical ethanol and water-ethanol co-solvent, Polym. Degrad. Stab. 97, 6, 839-848. [CrossRef] [Google Scholar]
  • Ye Y., Zhang Y., Fan J., Chang J. (2012) Selective production of 4-ethylphenolics from lignin via mild hydrogenolysis, Bioresour. Technol. 118, 648-651. [CrossRef] [PubMed] [Google Scholar]
  • Gosselink R.J.A., Teunissen W., van Dam J.E.G., de Jong E., Gellerstedt G., Scott E.L., Sanders J.P.M. (2012) Lignin depolymerisation in supercritical carbon dioxide/acetone/ water fluid for the production of aromatic chemicals, Bioresour. Technol. 106, 173-177. [CrossRef] [PubMed] [Google Scholar]
  • Liguori L., Barth T. (2011) Palladium-Nafion SAC-13 catalysed depolymerisation of lignin to phenols in formic acid and water, J. Anal. Appl. Pyrolysis 92, 2, 477-484. [CrossRef] [Google Scholar]
  • Zakzeski J., Weckhuysen B.M. (2011) Lignin solubilization and aqueous phase reforming for the production of aromatics chemicals and hydrogen, ChemSusChem 4, 369-378. [CrossRef] [PubMed] [Google Scholar]
  • Roberts V.M., Stein V., Reiner T., Lemonidou A., Li X., Lercher J.A. (2011) Towards Quantitative Catalytic Lignin Depolymerization, Chem. Eur. J. 17, 5939-5948. [CrossRef] [Google Scholar]
  • McMillen D.F., Malhotra R., Tse D.S. (1991) Interactive effects between solvent components: possible chemical origin of synergy in liquefaction and coprocessing, Energy Fuels 5, 179-187. [CrossRef] [Google Scholar]
  • Oasmaa A., Alen R., Meier D. (1993) Catalytic hydrotreatment of some technical lignins, Bioresour. Technol. 45, 189-194. [CrossRef] [Google Scholar]
  • Yan N., Zhao C., Dyson P.J., Wang C., Liu L.-t., Kou Y. (2008) Selective Degradation of Wood Lignin over Noble- Metal Catalysts in a Two-Step Process, ChemSusChem 1, 626-629. [CrossRef] [PubMed] [Google Scholar]
  • deWild P., Van der Laan R., Kloeekhorst A., Heeres E. (2009) Lignin Valorization for Chemicals and (Transportation) Fuels via Catalytic Pyrolysis and Hydrodeoxygenation, Env. Prog. Sustain. Energy 28, 461-469. [CrossRef] [Google Scholar]
  • Thring R.W., Breau J. (1996) Hydrocracking of solvolysis lignin in a batch reactor, Fuel 75, 7, 795-800. [CrossRef] [Google Scholar]
  • Elliott D.C., Baker E.G. (1984) Upgrading Biomass Liquefaction Products through Hydrodeoxygenation, Biotechnol. Bioeng. Symp. 14, 159-174. [Google Scholar]
  • Grange P., Burton A., de Zutter D., Churin E., Poncelet G., Delmon B. (1987) Catalytic hydroliquefactionof biomass. Influence of sulphur on products distribution, in Biomass for Energy and Industry, Grassi G., Delmon B., Molle J.-F., Zibette H. (eds), Elsevier Applied Science, London, pp. 1123-1127. [Google Scholar]
  • Meier D., Berns J., Faix O., Balfanz U., Baldauf W. (1994) Hydrocracking of organocell lignin for phenol production, Biomass Bioenergy 7, 99-105. [CrossRef] [Google Scholar]
  • Horacek J., Homola F., Kubickova I., Kubicka D. (2012) Lignin to liquids over sulfided catalysts, Catal. Today 179, 191-198. [CrossRef] [Google Scholar]
  • Chum H.L., Johnson D.K., Black S., Ratcliff M., Goheen D.W. (1988) Lignin hydrotreatment to low-molecularweight compounds, Adv. Sol. Energy 4, 91-200. [CrossRef] [Google Scholar]
  • Jonhson D.K., Chum H.L., Anzick R., Baldwin R.M. (1990) Preparation of a Lignin-Derived Pasting Oil, Appl. Biochem. Biotech. 24/25, 31-40. [CrossRef] [Google Scholar]
  • Ratcliff M.A., Johnson D.K., Posey F.L., Chum H.L. (1988) Hydrodeoxygenation of lignins and model compounds, Appl. Biochem. Biotech. 17, 151-160. [CrossRef] [Google Scholar]
  • Schuchardt U., Marangoni Borges O.A. (1989) Direct liquefaction of hydrolytic eucaliptus lignin in the presence of sulphided iron catalysts, Catal. Today 5, 523-531. [CrossRef] [Google Scholar]
  • Joffres B., Lorentz C., Vidalie M., Laurenti D., Quoineaud A.-A., Charon N., Daudin A., Quignard A., Geantet C. (2013) Catalytic hydroconversion of a wheat straw soda lignin: characterization of the products and the lignin residue, Appl. Catal. B: Environ. http://dx.doi.org/10.1016/j.apcatb.2013.01.039. [Google Scholar]
  • Engel D.J., Steigleder K.Z. (1987) Hydrocracking process for liquefaction of lignin, UOP US Patent 4,647,704, March. [Google Scholar]
  • Urban P., Engel D.J. (1988) Process for liquefaction of lignin, UOP US Patent 4,731,491, March. [Google Scholar]
  • Shabtai J.S., Zmierczak W.W., Chornet E. (2001) Process for conversion of lignin to reformulated, partially oxygenated gasoline, Patent US 6,172,272 B1, January. [Google Scholar]
  • Shabtai J.S., Zmierczak W.W., Chornet E., Jonhson D. (2003) Process for converting lignins into a high octane additive, Patent US 2003/0100807 Al, May. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.