Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 4, July-August 2013
Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Page(s) 765 - 783
DOI https://doi.org/10.2516/ogst/2013162
Published online 23 October 2013
  • Daugaard D.E., Brown R.C. (2003) Enthalpy for Pyrolysis for Several Types of Biomass, Energy Fuels 17, 934-939. [CrossRef] [Google Scholar]
  • Piskorz J., Radlein D., Scott D.S. (1986) On the mechanism of the rapid pyrolysis of cellulose, Journal Analytical Applied Pyrolysis 9, 121-137. [CrossRef] [Google Scholar]
  • Radlein D., Piskorz J., Scott D.S. (1987) Lignin derived oils from the fast pyrolysis of poplar wood, Journal Analytical Applied Pyrolysis 12, 51-59. [CrossRef] [Google Scholar]
  • Broido A., Kilzer F.J. (1963) A critique of the present state of knowledge of the mechanism of cellulose pyrolysis, Fire Res. Abstr. Rev. 5, 157. [Google Scholar]
  • Radlein D., Piskorz J., Scott D.S. (1992) Control of Selectivity in the Fast Pyrolysis of Cellulose, Proc. 6th EC Conference on Biomass for Energy, Industry and Environment, Athens, April 1991, Grassi G., Collina A., Zibetta H. (eds), Elsevier, pp. 643-649. [Google Scholar]
  • Scott D.S., Paterson L., Piskorz J., Radlein D. (2000) Pretreatment of poplar wood for fast pyrolysis: rate of cation removal, Journal Analytical Applied Pyrolysis 57, 169-176. [CrossRef] [Google Scholar]
  • Bradbury A.G.W., Sakai Y., Shafizadeh F. (1979) A kinetic model for pyrolysis of cellulose, Journal Applied Polymer Science 23, 3271. [CrossRef] [Google Scholar]
  • Thurner F., Mann U. (1981) Kinetic Investigation of Wood Pyrolysis, Ind. Eng. Chem. Process Dev. 20, 482-488. [CrossRef] [Google Scholar]
  • Prakash N., Karunanithi T. (2008) Kinetic Modeling in Biomass Pyrolysis — A Review, Journal Applied Sciences Research 4, (12), 1627-1636. [Google Scholar]
  • Lede J., Li H.Z., Villermaux J. (1988) Pyrolysis of Biomass. Evidence for a Fusionlike Phenomenon, ACS Symposium Series, Vol. 376, American Chemical Society, Washington, DC, DOI: 10.1021/bk-1988-0376.ch007. [Google Scholar]
  • Al-Haddad M., Rendek E., Corriou J.-P., Mauviel G. (2010) Biomass Fast Pyrolysis: Experimental Analysis and Modeling Approach, Energy Fuels 24, (9), 4689-4692. DOI: 10.1021/ef901254g. [CrossRef] [Google Scholar]
  • Radlein D. (1999) in Fast Pyrolysis of Biomass: A Handbook, Bridgwater A., Czernik S., Diebold J. (eds), CPL Press, Newbury, p. 164. [Google Scholar]
  • Piskorz J., Majerski P., Radlein D. (1999) in Biomass, A Growth Opportunity in Green Energy and Value-Added Products, Proceedings of the 4th Biomass Conference of the Americas, Overend R.P., Chornet E. (eds), Elsevier Science, Amsterdam, Vol. 2, pp. 1153-1159, ISBN: 0080430198. [Google Scholar]
  • Teixeira A.R., Mooney K.G., Kruger J.S., Williams C.L., Suszynski W.J., Schmidt L.D., Schmidt D.P., Dauenhauer P.J. (2011) Aerosol generation by reactive boiling ejection of molten cellulose, Energy Environmental Science. DOI: 10.1039/c1ee01876k. [Google Scholar]
  • Bayerbach R., Meier D. (2009) Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin). Part IV: Structure elucidation of oligomeric molecules, J. Anal. Appl. Pyrolysis 85, 98-107, doi: 10.1016/j.jaap.2008.10.021. [CrossRef] [Google Scholar]
  • Solantausta Y., Beckman D., Bridgwater A.V., Diebold J. P., Elliott D.C. (1992) Assessment of liquefaction and pyrolysis systems, Biomass Bioenergy 2, 279-297. [CrossRef] [Google Scholar]
  • Garrett D.E., Malian G.M. (1979) Pyrolysis process for solid wastes, US Patent 4, 153, 514. [Google Scholar]
  • Kovac R.J., Gorton C.W., Knight J.A., Newman C.J., O’Neil D.J. (1991) Research on the pyrolysis of hardwood in an entrained bed process development unit, DOI: 10.2172/5086913. [Google Scholar]
  • Maniatis K., Baeyens J., Peeters H., Roggeman G. (1993) The Egemin flash pyrolysis process: commissioning and results, in Advances in thermochemical biomass conversion, Bridgwater A.V. (ed.), Blackie, pp. 1257-1264. [Google Scholar]
  • Scott D.S., Piskorz J. (1984) The Continuous Flash Pyrolysis of Biomass, Canadian Journal Chemical Engineering 62, 404-412. [CrossRef] [Google Scholar]
  • Scott D.S., Piskorz J. (1982) The Flash Pyrolysis of Aspen- Poplar Wood, Canadian Journal Chemical Engineering 60, 666-674. [CrossRef] [Google Scholar]
  • Andres Matas (1998) Union Electrica Fenosa, PyNE issue 6, Sept., pp. 8-9. [Google Scholar]
  • Scott D.S., Majerski P., Piskorz J., Radlein D. (1999) A second look at fast pyrolysis of biomass — the RTI process, Journal Analytical Applied Pyrolysis 51, 23-37. [Google Scholar]
  • Liden G. (1985) Predicted effect of residence time on bio-oil yields for fluid bed pyrolysis, MASc Thesis, Chemical Engineering, University of Waterloo. [Google Scholar]
  • Piskorz J., Majerski P., Radlein D. (1998) Energy efficient liquefaction of biomaterials by thermolysis, US Patent 5, 853, 548. [Google Scholar]
  • http://www.envergenttech.com/. [Google Scholar]
  • Hodge F.E. (1953) Dehydrated Foods - Chemistry of Browning Reactions in Model Systems, Agricultural Food Chemistry 1, 15, Oct. 14. [Google Scholar]
  • Solantausta Y., Oasmaa A., Sipild K., Lindfors C., Lehto J., Autio J., Jokela P., Alin J., Heiskanen J. (2012) Bio-oil Production from Biomass: Steps toward Demonstration, Energy Fuels 26, (1), 233-240, [DOI: 10.1021/ef201109t]. [CrossRef] [Google Scholar]
  • Diebold J., Scahill J. (1988) Production of Primary Pyrolysis Oils in a Vortex Reactor, in Pyrolysis Oils from Biomass, Chapt. 4, pp. 31-40, ACS Symposium Series, Volume 376, DOI: 10.1021/bk-1988-0376.ch004. [Google Scholar]
  • Van Rossum G., Güell B.M., Ramachandran R.P.B., Seshan K., Lefferts L., Van Swaaij W.P.M., Kersten S.R. A. (2010) Evaporation of pyrolysis oil: Product distribution and residue char analysis, AIChE J. 56, 2200-2210. DOI: 10.1002/aic.12126. [Google Scholar]
  • Meier D., Klaubert H., Scholl S. (2008) Method and device for the pyrolysis of biomass, US Patent 7, 438, 785. [Google Scholar]
  • Meier D., Scholl S., Klaubert H., Markgraf J. (2007) Practical Results from Pytec’s Biomass To Oil (BTO) Process with Ablative Pyrolyser and Diesel CHP Plant, in Bridgwater A.V. (ed.), Bio”euro” - success and visions for bioenergy, CPL Scientific Publishing Service Ltd., ISBN 978-1-872691-28-2. [Google Scholar]
  • US Patent 7,438,785 (2008). [Google Scholar]
  • Venderbosch R.H., Prins W. (2010) Fast pyrolysis technology development, Biofuels Bioprod. Bioref. 4, 178-208. DOI: 10.1002/bbb. [Google Scholar]
  • Brown J.N., Brown R.C. (2012) Process optimization of an auger pyrolyzer with heat carrier using response surface methodology, Bioresource Technology 103, 405-414. doi: 10.1016/j.biortech.2011.09.117. [CrossRef] [PubMed] [Google Scholar]
  • Ingram L., Mohan D., Bricka M., Steele P., Strobel D., Crocker D., Mitchell B., Mohammad J., Cantrell K., Pittman, Jr C.U. (2008) Pyrolysis of Wood and Bark in an Auger Reactor: Physical Properties and Chemical Analysis of the Produced Bio-oils, Energy Fuels 22, 614-625. [Google Scholar]
  • Badger P.C., Fransham P. (2006) Use of mobile fast pyrolysis plants to densify biomass and reduce biomass handling costs – a preliminary assessment, Biomass Bioenergy 30, 321-325. [CrossRef] [Google Scholar]
  • Dahmen N., Henrich E., Dinjus E., Weirich F. (2012) The bioliq® bioslurry gasification process for the production of biosynfuels, organic chemicals, and energy, Energy Sustainability Society 2, 3. doi: 10.1186/2192-0567-2-3. [CrossRef] [Google Scholar]
  • http://www.kit.edu/english/pi_2010_972.php, or at: http://www.bioliq.de/english/24.php. [Google Scholar]
  • http://onlinelibrary.wiley.com/doi/10.1002/ep.10624/full. [Google Scholar]
  • Scahill J., Putsche V., Ringer M. (2006) Large-Scale Pyrolysis Oil Production: A Technology Assessment and Economic Analysis, United States. Dept. of Energy, doi: 10.2172/894989. [Google Scholar]
  • Shihadeh A. (1998) Rural Electrification from Local Resources: Biomass Pyrolysis Oil Combustion in a Direct Injection Diesel Engine, PhD Thesis, MIT, available at: http://hdl.handle.net/1721.1/43601. [Google Scholar]
  • Solantausta Y., Oasmaa A., Sipild K., Lindfors C., Lehto J., Autio J., Jokela P., Alin J., Heiskanen J. (2012) Bio-oil Production from Biomass: Steps toward Demonstration, Energy Fuels 26, 233-240. DOI: 10.1021/ef201109t. [CrossRef] [Google Scholar]
  • Butler E., Devlin G., Meier D., McDonnell K. (2011) A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading, Renewable Sustainable Energy Reviews 15, 4171-4186. doi: 10.1016/j.rser.2011.07.035. [CrossRef] [Google Scholar]
  • Mohan D., Pittman Jr C.U., Steele P.H. (2006) Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review, Energy Fuels 20, 848-889. doi:10.1021/ef0502397. [Google Scholar]
  • Granatstein D., Kruger C., Collins H.P., Garcia-Perez M., Yoder J. (2009) Use of biochar from the pyrolysis of waste organic material as a soil amendment. Center for Sustaining Agric. Nat. Res. Washington State University, Wenatchee, WA. WSDA Interagency Agreement. C0800248, http://www.ecy.wa.gov/pubs/0907062.pdf. [Google Scholar]
  • Weisz P.B., Haag W.O., Rodewald P.G. (1979) Catalytic Production of High-Grade Fuel (Gasoline) from Biomass Compounds by Shape-Selective Catalysis, Science, 5 Oct., pp. 57-58, DOI:10.1126/science.206.4414.57. [Google Scholar]
  • Frankiewicz T.C. (1981) Process for converting oxygenated hydrocarbons into hydrocarbons, US Patent 4308411. [Google Scholar]
  • Diebold J., Scahill J. (1988) Biomass to Gasoline, in Pyrolysis Oils from Biomass, Soltes J., Milne T.A. (eds), ACS Symposium Series; American Chemical Society, Vol. 376; Washington, DC; DOI: 10.1021/bk-1988-0376.fw001 [Google Scholar]
  • http://www.kior.com/. [Google Scholar]
  • http://www.rti.org/. [Google Scholar]
  • http://www.anellotech.com/. [Google Scholar]
  • http://www.kior.com/content/?s = 11 {&}t = Technology. [Google Scholar]
  • Radlein D.St.A.G., Mason S.L., Piskorz J., Scott D.S. (1991) Hydrocarbons from the Catalytic Pyrolysis of Biomass, Energy Fuels 5, 760-763. [CrossRef] [Google Scholar]
  • Marker T.L., Felix L.G., Linck M.B., Roberts M.J. (2012) [Tcbiomass2011] integrated hydropyrolysis and hydroconversion (IH2) for the direct production of gasoline and Diesel fuels or blending components from biomass, Part 1: Proof of principle testing, Environmental Progress Sustainable Energy 31, 191-199. DOI: 10.1002/ep.10629. [CrossRef] [Google Scholar]
  • Elliott D.C. (2007) Historical Developments in Hydroprocessing BioOils, Energy Fuels 21, 1792-1815. DOI: 10.1021/ef070044u. [CrossRef] [Google Scholar]
  • Xiu S., Shahbazi A. (2012) Bio-oil production and upgrading research: A review, Renewable Sustainable Energy Reviews 16, 4406-4414. [CrossRef] [Google Scholar]
  • http://www.dynamotive.com/. [Google Scholar]
  • http://envergenttech.com/. [Google Scholar]
  • De Miguel Mercader F., Groeneveld M.J., Kersten S.R.A., Way N.W.J., Schaverien C.J., Hogendoorn J.A. (2010) Production of advanced biofuels: Co-processing of upgraded pyrolysis oil in standard refinery units, Applied Catalysis B: Environmental 96, 57-66. [CrossRef] [Google Scholar]
  • http://www.biocoup.com/index.php?id = 18. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.