Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 4, July-August 2013
Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Page(s) 741 - 752
DOI https://doi.org/10.2516/ogst/2012096
Published online 12 September 2013
  • Huber G.W., Iborra S., Corma A. (2006) Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering, Chem. Rev. 106, 9, 4044-4098. [CrossRef] [PubMed] [Google Scholar]
  • Czernik S., Bridgwater A. V. (2004) Overview of Applications of Biomass Fast Pyrolysis Oil, Energy Fuels 18, 2, 590-598. [CrossRef] [Google Scholar]
  • Beslin P., Cansell F., Rey S. (1998) Thermodynamic aspects of supercritical fluids processing: applications to polymers ans wastes treatment, Oil Gas Science and Technology — Rev. IFP 53, 1, 71-98. [CrossRef] [EDP Sciences] [Google Scholar]
  • Akiya N., Savage P.E. (2002) Roles of Water for Chemical Reactions in High-Temperature Water, Chem. Rev. 102, 8, 2725-2750. 12 Oil & Gas Science and Technology - Rev. IFP Energies nouvelles [CrossRef] [PubMed] [Google Scholar]
  • Himmel M.E. (2008) Biomass Recalcitrance - Deconstructing the plant cell wall for bioenergy, Blackwell Publishing Ltd, Oxford, UK. [Google Scholar]
  • Lin S.Y., Dence C.W. (1992) Methods in Lignin Chemistry, Springer Verlag, Berlin. [Google Scholar]
  • Bobleter O. (1994) Hydrothermal degradation of polymers derived from plants, Prog. Polymer Sci. 19, 5, 797-841. [CrossRef] [Google Scholar]
  • Faix O., Meier D., Beinhoff O. (1989) Analysis of lignocelluloses and lignins from Arundo donax L. and Miscanthus sinensis Anderss., and hydroliquefaction of Miscanthus, Biomass 18, 2, 109-126. [CrossRef] [Google Scholar]
  • Karagoz S., Bhaskar T., Muto A., Sakata Y., Oshiki T., Kishimoto T. (2005) Low-temperature catalytic hydrothermal treatment of wood biomass: analysis of liquid products, Chem. Eng. J. 108, 1-2, 127-137. [CrossRef] [Google Scholar]
  • Kruse A., Gawlik A. (2003) Biomass Conversion in Water at 330-410 C and 30-50 MPa. Identification of Key Compounds for Indicating Different Chemical Reaction Pathways, Ind. Eng. Chem. Res. 42, 2, 267-279. [CrossRef] [Google Scholar]
  • Loppinet-Serani A., Aymonier C., Cansell F. (2008) Current and foreseable applications of supercritical Water for- energy and the environment, ChemSusChem 1, 6, 486-503. [CrossRef] [PubMed] [Google Scholar]
  • Saka S., Konishi R. (2001) Chemical conversion of biomass resources to useful chemicals and fuels by supercritical water treatment, in Progress in Thermochemical Biomass Conversion, Bridgwater A.V. (ed), Blackwell Science Ltd, London. [Google Scholar]
  • Loppinet-Serani A., Aymonier C., Cansell F. (2010) Supercritical water for environmental technologies, J. Chem. Technol. Biotechnol. 85, 5, 583-589. [CrossRef] [Google Scholar]
  • Toor S.S., Rosendahl L., Rudolf A. (2011) Hydrothermal liquefaction of biomass: A review of subcritical water technologies, Energy 36, 5, 2328-2342. [CrossRef] [Google Scholar]
  • Aida T.M., Sato Y., Watanabe M., Tajima K., Nonaka T., Hattori H., Arai K. (2007) Dehydration of d-glucose in high temperature water at pressures up to 80 MPa, J. Supercrit. Fluids 40, 3, 381-388. [CrossRef] [Google Scholar]
  • Aida T.M., Tajima K., Watanabe M., Saito Y., Kuroda K., Nonaka T., Hattori H., Smith J., Arai K. (2007) Reactions of d-fructose in water at temperatures up to 400°C and pressures up to 100 MPa, J. Supercrit. Fluids 42, 1, 110-119. [CrossRef] [Google Scholar]
  • Aida T.M., Shiraishi N., Kubo M., Watanabe M., Smith J. (2010) Reaction kinetics of D-xylose in sub- and supercritical water, J. Supercrit. Fluids 55, 1, 208-216. [CrossRef] [Google Scholar]
  • Gonzalez G., Salvado J., Montane D. (2004) Reactions of vanillic acid in sub- and supercritical water, J. Supercrit. Fluids 31, 1, 57-66. [CrossRef] [Google Scholar]
  • Gonzalez G., Montané D. (2005) Kinetics of dibenzylether hydrothermolysis in supercritical water, AIChE 51, 3, 971-981. [CrossRef] [Google Scholar]
  • Kabyemela B.M., Adschiri T., Malaluan R.M., Arai K. (1997) Kinetics of Glucose Epimerization and Decomposition in Subcritical and Supercritical Water, Ind. Eng. Chem. Res. 36, 5, 1552-1558. [CrossRef] [Google Scholar]
  • Knezevic D., van Swaaij W.P.M., Kersten S.R.A. (2009) Hydrothermal Conversion of Biomass: I, Glucose Conversion in Hot Compressed Water, Ind. Eng. Chem. Res. 48, 10, 4731-4743. [CrossRef] [Google Scholar]
  • Saisu M., Sato T., Watanabe M., Adschiri T., Arai K. (2003) Conversion of Lignin with Supercritical Water-Phenol Mixtures, Energy Fuels 17, 4, 922-928. [CrossRef] [Google Scholar]
  • Sasaki M., Fang Z., Fukushima Y., Adschiri T., Arai K. (2000) Dissolution and Hydrolysis of Cellulose in Subcritical and Supercritical Water, Ind. Eng. Chem. Res. 39, 8, 2883-2890. [CrossRef] [Google Scholar]
  • Wahyudiono Sasaki M., Goto M. (2009) Conversion of biomass model compound under hydrothermal conditions using batch reactor, Fuel 88, 9, 1656-1664. [CrossRef] [Google Scholar]
  • Barbier J., Charon N., Dupassieux N., Loppinet-Serani A., Mahé L., Ponthus J., Courtiade M., Ducrozet A., Fonverne A., Cansell F. (2011) Hydrothermal conversion of glucose in a batch reactor. A detailed study of an experimental key-parameter: The heating time, J. Supercrit. Fluids 58, 1, 114-120. [CrossRef] [Google Scholar]
  • Barbier J., Charon N., Dupassieux N., Loppinet-Serani A., Mahé L., Ponthus J., Courtiade M., Ducrozet A., Quoineaud A.-A., Cansell F. (2012) Hydrothermal conversion of lignin compounds, A detailed study of fragmentation and condensation reaction pathways, Biomass and Bioenergy 46, 479-491. [CrossRef] [Google Scholar]
  • Bocanegra P.E., Reverte C., Aymonier C., Loppinet-Serani A., Barsan M.M., Butler I.S., Kozinski J.A., Gokalp I. (2010) Gasification study of winery waste using a hydrothermal diamond anvil cell, J. Supercrit. Fluids 53, 1-3, 72-81. [CrossRef] [Google Scholar]
  • Mao J., Holtman K.M., Scott J.T., Kadla J.F., Schmidt-Rohr K. (2006) Differences between Lignin in Unprocessed Wood, Milled Wood, Mutant Wood, and Extracted Lignin Detected by 13C Solid-State NMR, J. Agric. Food Chem. 54, 26, 9677-9686. [CrossRef] [PubMed] [Google Scholar]
  • Jacobsen S.E., Wyman C.E. (2002) Xylose Monomer and Oligomer Yields for Uncatalyzed Hydrolysis of Sugarcane Bagasse Hemicellulose at Varying Solids Concentration, Ind. Eng. Chem. Res. 41, 6, 1454-1461. [CrossRef] [Google Scholar]
  • Nolen S.A., Liotta C.L., Eckert C.A., Glaser R. (2003) The catalytic opportunities of near-critical water: a benign medium for conventionally acid and base catalyzed condensations for organic synthesis, Green Chem. 5, 5, 663-669. [CrossRef] [Google Scholar]
  • Catallo W.J., Shupe T.F., Comeaux J.L., Junk T. (2010) Transformation of glucose to volatile and semi-volatile products in hydrothermal (HT) systems, Biomass and Bioenergy 34, 1, 1-13. [CrossRef] [Google Scholar]
  • Siskin M., Brons G., Vaughn S.N., Katritzky A.R., Balasubramanian M. (1990) Aqueous organic chemistry. 3. Aquathermolysis: reactivity of ethers and esters, Energy Fuels 4, 5, 488-492. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.