Dossier: Discovery and Optimization of Catalysts and Solvents for Absorption Using High Throughput Experimentation
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 3, May-June 2013
Dossier: Discovery and Optimization of Catalysts and Solvents for Absorption Using High Throughput Experimentation
Page(s) 469 - 486
DOI https://doi.org/10.2516/ogst/2012025
Published online 06 March 2013
  • de Coninck H. (2010) Advocacy for carbon capture and storage could arouse distrust, Nature 463, 293. [CrossRef] [PubMed]
  • Rao A.B., Rubin E.S. (2002) A Technical, economic and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control, Environ. Sci. Technol. 36, 4467-4475. [CrossRef] [PubMed]
  • Rochelle G.T. (2009) Amine scrubbing for CO2 capture, Science 325, 1652-1654. [CrossRef] [PubMed]
  • Porcheron F., Gibert A., Jacquin M., Mougin P., Faraj A., Goulon A., Bouillon P.-A., Delfort B., Le Pennec D., Raynal L. (2011) High Throughput Screening of amine thermodynamic properties applied to postcombustion CO2 capture process evaluation, Energy Procedia 4, 15-22. [CrossRef]
  • Versteeg G.F., van Swaaij W.P.M. (1988) Solubility and diffusivity of acid gases (CO2, N2O) in aqueous alkanolamine solutions, J. Chem. Eng. Data 33, 29-34. [CrossRef]
  • Haji-Sulaiman M.Z., Aroua M.K., Illyas Pervez Md. (1996) Equilibrium concentration profiles of species in CO2-alkanolaminewater systems, Gas Sep. Purif. 10, 13-18. [CrossRef]
  • Chauhan R.K., Yoon S.J., Lee H., Yoon J.-H., Shim J.-G., Song G.-C., Eum H.-M. (2003) Solubilities of carbon dioxide in aqueous solutions of triisopropanolamine, Fluid Phase Equilib. 208, 239-245. [CrossRef]
  • Seo D.-J., Hong W.-H. (1996) Solubilities of carbon dioxide in aqueous mixtures of diethanolamine and 2-amino-2-methyl-1- propanol, J. Chem. Eng. Data 41, 258-260. [CrossRef]
  • Ma’mun S., Jakobsen J.P., Svendsen H.F., Juliussen O. (2006) Experimental and modeling study of the solubility of carbon dioxide in aqueous 30 mass % 2-((2-aminoethyl)amino)ethanol Solution, Ind. Eng. Chem. Res. 45, 2505-2512. [CrossRef]
  • Ermatchkov V., Pérez-Salado Kamps A., Maurer G. (2006) Solubility of carbon dioxide in aqueous solutions of Nmethyldiethanolamine in the low gas loading region, Ind. Eng. Chem. Res. 45, 6081-6091. [CrossRef]
  • Jou F.-Y., Mather A.E., Otto F.D. (1982) Solubility of H2S and CO2 in aqueous methyldiethanolamine solutions, Ind. Eng. Chem. Process. Des. Dev. 21, 539-544. [CrossRef]
  • Rho S.-W., Yoo K-.P., Lee J.S., Nam S.C., Son J.E., Min B.-M. (1997) Solubility of CO2 in aqueous methyldiethanolamine solutions, J. Chem. Eng. Data 42, 1161-1164. [CrossRef]
  • Shen K.-P., Li M.-H. (1992) Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine, J. Chem. Eng. Data 37, 96-100. [CrossRef]
  • Ma’mun S., Nilsen R., Svendsen H.F., Juliussen O. (2005) Solubility of carbon dioxide in 30 mass % monoethanolamine and 50 mass % methyldiethanolamine solutions, J. Chem. Eng. Data 50, 630-634. [CrossRef]
  • Mathonat C., Majer V., Mather A.E., Grolier J.-P.E. (1998) Use of flow calorimetry for determining enthalpies of absorption and the solubility of CO2 in aqueous monoethanolamine solutions, Ind. Eng. Chem. Res. 37, 4136-4141. [CrossRef]
  • Jou F.-Y., Otto F.D., Mather A.E. (1994) Vapor-Liquid Equilibrium of carbon dioxide in aqueous mixtures of monoethanolamine and methyldiethanolamine, Ind. Eng. Chem. Res. 33, 2002-2005. [CrossRef]
  • Kent R., Eisenberg B. (1976) Better data for amine treating, Hydrocarbon Proc. 55, 87-90.
  • Sartori G., Savage D.W. (1983) Sterically hindered amines for CO2 removal from gases, Ind. Eng. Chem. Fundam. 22, 239-249. [CrossRef]
  • Austgen D.M., Rochelle G.T., Peng X., Chen C-C. (1989) Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems using the Eletrolyte-NRTL equation, Ind. Eng. Chem. Res. 28, 1060-1073. [CrossRef]
  • Benamor A., Aroua M.K. (2005) Modeling of CO2 Solubility and carbamate concentration in DEA, MDEA and their mixtures using the Deshmukh–Mather model, Fluid Phase Equilib. 231, 150-162. [CrossRef]
  • Ma’mun S., Svendsen H.F., Hoff K.A., Juliussen O. (2007) Selection of new absorbents for carbon dioxide capture, Energy Convers. Manage. 48, 251-258. [CrossRef]
  • Bonenfant D., Mimeault M., Hausler R. (2003) Determination of the structural features of distinct amines important for the absorption of CO2 and regeneration in aqueous solution, Ind. Eng. Chem. Res. 42, 3179-3184. [CrossRef]
  • Puxty G., Rowland R., Allport A., Yang Q., Bown M., Burns R., Maeder M., Attalla M. (2009) Carbon dioxide postcombustion capture: A novel screening study of the carbon dioxide absorption performance of 76 amines, Environ. Sci. Technol. 43, 6427-6433. [CrossRef] [PubMed]
  • Porcheron F., Gibert A., Mougin P., Wender A. (2011) High Throughput Screening of CO2 solubility in aqueous monoamine solutions, Environ. Sci. Technol. 45, 2486-2492. [CrossRef] [PubMed]
  • Hansch C., Leo A., Hoekman D. (1995) Exploring QSAR – Hydrophobic, electronic and steric constants, American Chemical Society, Washington, D.C.
  • Wold S. (1991) Validation of QSARs, QSAR 10, 191-193.
  • Friesner R.A. (1991) New methods for electronic structure calculations on large molecules, Ann. Rev. Phys. Chem. 42, 341-367. [CrossRef]
  • Marten B., Kim K., Cortis C., Friesner R.A., Murphy R.B., Ringnalda M.N., Sitkoff D., Honig B. (1996) New model for calculation of solvation free energies: corrections of self-consistent reaction field continuum dielectric theory for short-range hydrogen-bonding Effects, J. Phys. Chem. 100, 11775-11788. [CrossRef]
  • Tannor D.J., Marten B., Murphy R., Friesner R.A., Sitkoff D., Nicholls A., Ringnalda M., Goddard W.A., Honig B. (1994) Accurate first principles calculation of molecular charge distributions and solvation energies from Ab initio quantum mechanics and continuum dielectric theory, J. Am. Chem. Soc. 116, 11875-11882. [CrossRef]
  • Abbaci K., Hadjali A., Lietard L., Rocacher D. (2011) A similarity skyline approach for handling graph queries – A preliminary report, 2011 IEEE 27th International Conference on Data Engineering Workshops (ICDEW), Hannover, Germany, 11-16 April.
  • Conte D., Foggia P., Sansone C., Vento M. (2004) Thirty years of graph matching in pattern recognition, Int. J. Pattern Recogn. Artif. Intell. 18, 265-298. [CrossRef]
  • Hu H., Hang Y., Han J., Zhou X. (2005) Mining Coherent dense subgraphs across massive biological network for functional discovery, Bioinformatics 1, 1-9.
  • Tian Y., McEachin R., Santos C., States D.J., Patel J.M. (2007) Saga: A subgraph matching tool for biological graphs, Bioinformatics 23, 232-239. [CrossRef] [PubMed]
  • Goulon-Sigwalt-Abram A., Duprat A., Dreyfus D. (2005) From hopfield nets to recursive networks to graph machines: Numerical machine learning for structured data, Theor. Comput. Sci. 344, 298-344. [CrossRef]
  • Goulon A., Duprat A., Dreyfus D. (2006) Graph machines and their applications to computer-aided drug design: A new approach to learning from structured data, Lecture Notes in Comput. Sci. 4135, 1-19.
  • Goulon A., Picot T., Duprat A., Dreyfus D. (2007) Predicting activities without computing descriptors: graph machines for QSAR, SAR QSAR Environ. Res. 18, 141-153. [CrossRef] [PubMed]
  • Goulon A., Faraj A., Pirngruber G., Jacquin M., Porcheron F., Leflaive P., Martin P., Baron G.V., Denayer J.F.M. (2011) Novel graph machine based QSAR approach for the prediction of the adsorption enthalpies of alkanes on zeolites, Catal. Today 159, 74-83. [CrossRef]
  • Bunke H., Riesen K. (2011) Recent advances in graph-based pattern recognition with application in document analysis, Pattern Recogn. 44, 1057-1067. [CrossRef]
  • Schenker A., Bunke H., Last M., Kandel A. (2005) Graphtheoretic techniques for web content mining, World Scientific.
  • Klinger S., Austin J. (2005) Chemical similarity searching using a neural graph matcher, in Proc. of 13th European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium, 27-29 April, pp. 479-484 41 Weininger D. (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules, J. Chem. Inf. Comput. Sci. 28, 31-36.
  • Weininger D., Weininger A., Weininger J.L. (1989) SMILES, a chemical language and information system. 2. Algorithm for generation of unique SMILES notation, J. Chem. Inf. Comput. Sci. 29, 97-101. [CrossRef]
  • Blanchon Le Bouhelec E., Mougin P., Barreau A., Solimando R. (2007) Rigorous modelling of the acid gas heat of absorption in alkanolamine solutions, Energy Fuels 21, 2044-2055. [CrossRef]
  • Jochum C., Gasteiger J. (1977) J. Chem. Inf. Comput. Sci. 17, 113-117. [CrossRef]
  • Hastie T., Tibshirani R., Friedman J. (2009) The elements of statistical learning, Springer, 2nd Ed.
  • Livingstone D. (2002) Data Analysis for Chemists, Oxford University Press.
  • Aarnink W.A.M., Weishaupt A., Vansilfhout A. (1990) Angleresolved X-ray photoelectron-spectroscopy (ARXPS) and a modified Levenberg-Marquardt fit procedure – A new combination for modelling thin-layers, Appl. Surf. Sci. 45, 37-48. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.