Dossier: Discovery and Optimization of Catalysts and Solvents for Absorption Using High Throughput Experimentation
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 3, May-June 2013
Dossier: Discovery and Optimization of Catalysts and Solvents for Absorption Using High Throughput Experimentation
Page(s) 469 - 486
DOI https://doi.org/10.2516/ogst/2012025
Published online 06 March 2013
  • de Coninck H. (2010) Advocacy for carbon capture and storage could arouse distrust, Nature 463, 293. [CrossRef] [PubMed] [Google Scholar]
  • Rao A.B., Rubin E.S. (2002) A Technical, economic and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control, Environ. Sci. Technol. 36, 4467-4475. [CrossRef] [PubMed] [Google Scholar]
  • Rochelle G.T. (2009) Amine scrubbing for CO2 capture, Science 325, 1652-1654. [CrossRef] [PubMed] [Google Scholar]
  • Porcheron F., Gibert A., Jacquin M., Mougin P., Faraj A., Goulon A., Bouillon P.-A., Delfort B., Le Pennec D., Raynal L. (2011) High Throughput Screening of amine thermodynamic properties applied to postcombustion CO2 capture process evaluation, Energy Procedia 4, 15-22. [CrossRef] [Google Scholar]
  • Versteeg G.F., van Swaaij W.P.M. (1988) Solubility and diffusivity of acid gases (CO2, N2O) in aqueous alkanolamine solutions, J. Chem. Eng. Data 33, 29-34. [CrossRef] [Google Scholar]
  • Haji-Sulaiman M.Z., Aroua M.K., Illyas Pervez Md. (1996) Equilibrium concentration profiles of species in CO2-alkanolaminewater systems, Gas Sep. Purif. 10, 13-18. [CrossRef] [Google Scholar]
  • Chauhan R.K., Yoon S.J., Lee H., Yoon J.-H., Shim J.-G., Song G.-C., Eum H.-M. (2003) Solubilities of carbon dioxide in aqueous solutions of triisopropanolamine, Fluid Phase Equilib. 208, 239-245. [CrossRef] [Google Scholar]
  • Seo D.-J., Hong W.-H. (1996) Solubilities of carbon dioxide in aqueous mixtures of diethanolamine and 2-amino-2-methyl-1- propanol, J. Chem. Eng. Data 41, 258-260. [CrossRef] [Google Scholar]
  • Ma’mun S., Jakobsen J.P., Svendsen H.F., Juliussen O. (2006) Experimental and modeling study of the solubility of carbon dioxide in aqueous 30 mass % 2-((2-aminoethyl)amino)ethanol Solution, Ind. Eng. Chem. Res. 45, 2505-2512. [CrossRef] [Google Scholar]
  • Ermatchkov V., Pérez-Salado Kamps A., Maurer G. (2006) Solubility of carbon dioxide in aqueous solutions of Nmethyldiethanolamine in the low gas loading region, Ind. Eng. Chem. Res. 45, 6081-6091. [CrossRef] [Google Scholar]
  • Jou F.-Y., Mather A.E., Otto F.D. (1982) Solubility of H2S and CO2 in aqueous methyldiethanolamine solutions, Ind. Eng. Chem. Process. Des. Dev. 21, 539-544. [CrossRef] [Google Scholar]
  • Rho S.-W., Yoo K-.P., Lee J.S., Nam S.C., Son J.E., Min B.-M. (1997) Solubility of CO2 in aqueous methyldiethanolamine solutions, J. Chem. Eng. Data 42, 1161-1164. [CrossRef] [Google Scholar]
  • Shen K.-P., Li M.-H. (1992) Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine, J. Chem. Eng. Data 37, 96-100. [CrossRef] [Google Scholar]
  • Ma’mun S., Nilsen R., Svendsen H.F., Juliussen O. (2005) Solubility of carbon dioxide in 30 mass % monoethanolamine and 50 mass % methyldiethanolamine solutions, J. Chem. Eng. Data 50, 630-634. [CrossRef] [Google Scholar]
  • Mathonat C., Majer V., Mather A.E., Grolier J.-P.E. (1998) Use of flow calorimetry for determining enthalpies of absorption and the solubility of CO2 in aqueous monoethanolamine solutions, Ind. Eng. Chem. Res. 37, 4136-4141. [CrossRef] [Google Scholar]
  • Jou F.-Y., Otto F.D., Mather A.E. (1994) Vapor-Liquid Equilibrium of carbon dioxide in aqueous mixtures of monoethanolamine and methyldiethanolamine, Ind. Eng. Chem. Res. 33, 2002-2005. [CrossRef] [Google Scholar]
  • Kent R., Eisenberg B. (1976) Better data for amine treating, Hydrocarbon Proc. 55, 87-90. [Google Scholar]
  • Sartori G., Savage D.W. (1983) Sterically hindered amines for CO2 removal from gases, Ind. Eng. Chem. Fundam. 22, 239-249. [CrossRef] [Google Scholar]
  • Austgen D.M., Rochelle G.T., Peng X., Chen C-C. (1989) Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems using the Eletrolyte-NRTL equation, Ind. Eng. Chem. Res. 28, 1060-1073. [CrossRef] [Google Scholar]
  • Benamor A., Aroua M.K. (2005) Modeling of CO2 Solubility and carbamate concentration in DEA, MDEA and their mixtures using the Deshmukh–Mather model, Fluid Phase Equilib. 231, 150-162. [CrossRef] [Google Scholar]
  • Ma’mun S., Svendsen H.F., Hoff K.A., Juliussen O. (2007) Selection of new absorbents for carbon dioxide capture, Energy Convers. Manage. 48, 251-258. [CrossRef] [Google Scholar]
  • Bonenfant D., Mimeault M., Hausler R. (2003) Determination of the structural features of distinct amines important for the absorption of CO2 and regeneration in aqueous solution, Ind. Eng. Chem. Res. 42, 3179-3184. [CrossRef] [Google Scholar]
  • Puxty G., Rowland R., Allport A., Yang Q., Bown M., Burns R., Maeder M., Attalla M. (2009) Carbon dioxide postcombustion capture: A novel screening study of the carbon dioxide absorption performance of 76 amines, Environ. Sci. Technol. 43, 6427-6433. [CrossRef] [PubMed] [Google Scholar]
  • Porcheron F., Gibert A., Mougin P., Wender A. (2011) High Throughput Screening of CO2 solubility in aqueous monoamine solutions, Environ. Sci. Technol. 45, 2486-2492. [CrossRef] [PubMed] [Google Scholar]
  • Hansch C., Leo A., Hoekman D. (1995) Exploring QSAR – Hydrophobic, electronic and steric constants, American Chemical Society, Washington, D.C. [Google Scholar]
  • Wold S. (1991) Validation of QSARs, QSAR 10, 191-193. [Google Scholar]
  • Friesner R.A. (1991) New methods for electronic structure calculations on large molecules, Ann. Rev. Phys. Chem. 42, 341-367. [CrossRef] [Google Scholar]
  • Marten B., Kim K., Cortis C., Friesner R.A., Murphy R.B., Ringnalda M.N., Sitkoff D., Honig B. (1996) New model for calculation of solvation free energies: corrections of self-consistent reaction field continuum dielectric theory for short-range hydrogen-bonding Effects, J. Phys. Chem. 100, 11775-11788. [CrossRef] [Google Scholar]
  • Tannor D.J., Marten B., Murphy R., Friesner R.A., Sitkoff D., Nicholls A., Ringnalda M., Goddard W.A., Honig B. (1994) Accurate first principles calculation of molecular charge distributions and solvation energies from Ab initio quantum mechanics and continuum dielectric theory, J. Am. Chem. Soc. 116, 11875-11882. [CrossRef] [Google Scholar]
  • Abbaci K., Hadjali A., Lietard L., Rocacher D. (2011) A similarity skyline approach for handling graph queries – A preliminary report, 2011 IEEE 27th International Conference on Data Engineering Workshops (ICDEW), Hannover, Germany, 11-16 April. [Google Scholar]
  • Conte D., Foggia P., Sansone C., Vento M. (2004) Thirty years of graph matching in pattern recognition, Int. J. Pattern Recogn. Artif. Intell. 18, 265-298. [CrossRef] [Google Scholar]
  • Hu H., Hang Y., Han J., Zhou X. (2005) Mining Coherent dense subgraphs across massive biological network for functional discovery, Bioinformatics 1, 1-9. [Google Scholar]
  • Tian Y., McEachin R., Santos C., States D.J., Patel J.M. (2007) Saga: A subgraph matching tool for biological graphs, Bioinformatics 23, 232-239. [CrossRef] [PubMed] [Google Scholar]
  • Goulon-Sigwalt-Abram A., Duprat A., Dreyfus D. (2005) From hopfield nets to recursive networks to graph machines: Numerical machine learning for structured data, Theor. Comput. Sci. 344, 298-344. [CrossRef] [Google Scholar]
  • Goulon A., Duprat A., Dreyfus D. (2006) Graph machines and their applications to computer-aided drug design: A new approach to learning from structured data, Lecture Notes in Comput. Sci. 4135, 1-19. [Google Scholar]
  • Goulon A., Picot T., Duprat A., Dreyfus D. (2007) Predicting activities without computing descriptors: graph machines for QSAR, SAR QSAR Environ. Res. 18, 141-153. [CrossRef] [PubMed] [Google Scholar]
  • Goulon A., Faraj A., Pirngruber G., Jacquin M., Porcheron F., Leflaive P., Martin P., Baron G.V., Denayer J.F.M. (2011) Novel graph machine based QSAR approach for the prediction of the adsorption enthalpies of alkanes on zeolites, Catal. Today 159, 74-83. [CrossRef] [Google Scholar]
  • Bunke H., Riesen K. (2011) Recent advances in graph-based pattern recognition with application in document analysis, Pattern Recogn. 44, 1057-1067. [CrossRef] [Google Scholar]
  • Schenker A., Bunke H., Last M., Kandel A. (2005) Graphtheoretic techniques for web content mining, World Scientific. [Google Scholar]
  • Klinger S., Austin J. (2005) Chemical similarity searching using a neural graph matcher, in Proc. of 13th European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium, 27-29 April, pp. 479-484 41 Weininger D. (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules, J. Chem. Inf. Comput. Sci. 28, 31-36. [Google Scholar]
  • Weininger D., Weininger A., Weininger J.L. (1989) SMILES, a chemical language and information system. 2. Algorithm for generation of unique SMILES notation, J. Chem. Inf. Comput. Sci. 29, 97-101. [CrossRef] [Google Scholar]
  • Blanchon Le Bouhelec E., Mougin P., Barreau A., Solimando R. (2007) Rigorous modelling of the acid gas heat of absorption in alkanolamine solutions, Energy Fuels 21, 2044-2055. [CrossRef] [Google Scholar]
  • Jochum C., Gasteiger J. (1977) J. Chem. Inf. Comput. Sci. 17, 113-117. [CrossRef] [Google Scholar]
  • Hastie T., Tibshirani R., Friedman J. (2009) The elements of statistical learning, Springer, 2nd Ed. [Google Scholar]
  • Livingstone D. (2002) Data Analysis for Chemists, Oxford University Press. [Google Scholar]
  • Aarnink W.A.M., Weishaupt A., Vansilfhout A. (1990) Angleresolved X-ray photoelectron-spectroscopy (ARXPS) and a modified Levenberg-Marquardt fit procedure – A new combination for modelling thin-layers, Appl. Surf. Sci. 45, 37-48. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.