Dossier: Discovery and Optimization of Catalysts and Solvents for Absorption Using High Throughput Experimentation
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 3, May-June 2013
Dossier: Discovery and Optimization of Catalysts and Solvents for Absorption Using High Throughput Experimentation
Page(s) 445 - 468
DOI https://doi.org/10.2516/ogst/2013109
Published online 09 July 2013
  • Agile Alliance (2012) http://www.agilealliance.org/the-alliance/. [Google Scholar]
  • Meguro S., Ohnishi T., Lippmaa M., Koinuma H. (2005) Elements of informatics for combinatorial solid-state materials science, Meas. Sci. Technol. 16, 1, 309-316. [CrossRef] [Google Scholar]
  • Zhang W.H., Fasolka M.J., Karim A., Amis E.J. (2005) An informatics infrastructure for combinatorial and high- throughput materials research built on open source code, Meas. Sci. Technol. 16, 1, 261-269. [CrossRef] [Google Scholar]
  • Farrusseng D., Baumes L., Vauthey I., Hayaud C., Denton P., Mirodatos C. (2002) The Combinatorial Approach for Heterogeneous Catalysis: A Challenge for Academic Research, in Principles and Methods for Accelerated Catalyst Design and Testing, Springer, The Netherlands. [Google Scholar]
  • Derouane E. (2002) Principles and Methods for Accelerated Catalyst Design, Preparation, Testing, and Development: Conclusions of the Nato Advanced Study Institute, in Principles and Methods for Accelerated Catalyst Design and Testing, Springer, The Netherlands. [Google Scholar]
  • Ausfelder F., Baumes L.A., Farrusseng D. (2011) Preface, Catal. Today 159, 1, 1. [CrossRef] [Google Scholar]
  • Adams N., Schubert U.S. (2004) Software solutions for combinatorial and high-throughput materials and polymer research, Macromol. Rapid Comm. 25, 1, 48-58. [CrossRef] [Google Scholar]
  • Lab VIEW Graphical Instrument Control, http://www.ni.com/. [Google Scholar]
  • Frantzen A., Sanders D., Scheidtmann J., Simon U., Maier W.F. (2005) A flexible database for combinatorial and high-throughput materials science, QSAR Comb. Sci. 24, 1, 22-28. [CrossRef] [Google Scholar]
  • Farrusseng D., Clerc F., Mirodatos C., Azam N., Gilardoni F., Thybaut J.W., Balasubramaniam P., Marin G.B. (2007) Development of an integrated informatics toolbox: HT kinetic and virtual screening, Comb. Chem. High Throughput Screening 10, 2, 85-97. [CrossRef] [Google Scholar]
  • Jiang J., Jorda J.L., Yu J., Baumes L.A., Mugnaioli E., Diaz-Cabanas M.J., Kolb U., Corma A. (2011) Synthesis and Structure Determination of the Hierarchical MesoMicroporous Zeolite ITQ-43, Science 333, 6046, 1131-1134. [CrossRef] [PubMed] [Google Scholar]
  • Fecant A. (2007) Synthesis of new zeolites with pore sizes of 10 and 12 tetrahedric atoms, PHD. [Google Scholar]
  • Baumes L.A., Moliner M., Corma A. (2007) Prediction of ITQ-21 zeolite phase crystallinity: Parametric versus non- parametric strategies, QSAR Comb. Sci. 26, 2, 255-272. [CrossRef] [Google Scholar]
  • Barr G., Dong W., Gilmore C.J. (2004) PoIySNAP: a computer program for analysing high-throughput powder diffraction data, J. Appl. Crystallogr. 37, 4, 658-664. [CrossRef] [Google Scholar]
  • Baumes L.A., Kruger F., Jimenez S., Collet P., Corma A. (2011) Boosting theoretical zeolitic framework generation for the determination of new materials structures using GPU programming, Phys. Chem. Chem. Phys. 13, 10, 4674-4678. [CrossRef] [PubMed] [Google Scholar]
  • Deem M.W., Pophale R., Cheeseman P.A., Earl D.J. (2009) Computational Discovery of New Zeolite-Like Materials, J. Phys. Chem. C 113, 51, 21353-21360. [CrossRef] [Google Scholar]
  • Cawse J.N., Gazzola G., Packard N. (2011) Efficient discovery and optimization of complex high-throughput experiments, Catal. Today 159, 1, 55-63. [CrossRef] [Google Scholar]
  • Amanna A.E., Ali D., Fitch D.G., Reed J.H. (2012) Parametric optimization of software defined radio configurations using design of experiments, Analog Integr. Circuits Signal Process. 73, 2, 637-648. [CrossRef] [Google Scholar]
  • Kleijnen J.P.C. (2005) An overview of the design and analysis of simulation experiments for sensitivity analysis, Eur. J. Operation. Res. 164, 2, 287-300. [CrossRef] [Google Scholar]
  • Straetemans R., O’Brien T., Wouters L., Van Dun J., Janicot M., Bijnens L., Burzykowski T., Aerts M. (2005) Design and analysis of drug combination experiments, Biom. J. 47, 3, 299-308. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • King C.W. (2006) Statistics for experimenters, design, innovation and discovery, AIChE J. 52, 7, 2657-2657. [CrossRef] [Google Scholar]
  • Mazerolles G., Mathieu D., Phantanluu R., Siouffi A.M. (1989) Computer-Assisted Optimization with Nemrod Software, J. Chromatogr. 485, 433-451. [CrossRef] [Google Scholar]
  • Brucker P., Gladky A., Hoogeveen H., Kovalyov M.Y., Potts C., Tautenhahn T., Van De Velde S. (1998) Scheduling a batching machine, J. Schedul. 1, 31-55. [CrossRef] [MathSciNet] [Google Scholar]
  • Potts C.N., Kovalyov M.Y. (2000) Scheduling with batching: A review, Eur. J. Operation. Res. 120, 2, 228-249. [CrossRef] [Google Scholar]
  • Boudhar M., Finke G. (2000) Scheduling on a batch machine with job compatibilities, Belgian J. Operations Res. 40, 69-80. [Google Scholar]
  • Brauner N., Finke G., Lehoux-Lebacque V., Rapine C., Kellerer H., Potts C., Strusevich V. (2009) Operator non-availability periods, 40R-Q J. Oper. Res. 7, 3, 239-253. [CrossRef] [MathSciNet] [Google Scholar]
  • Brauner N., Finke G., Lehoux-Lebacque V., Rapine C., Kellerer H., Potts C., Strusevich V. (2009) Operator non- availability periods, 4OR: A Quarterly Journal of Operations Research 7, 3, 239-253. [CrossRef] [MathSciNet] [Google Scholar]
  • Rapine C., Brauner N., Finke G., Lebacque V. (2012) Single machine scheduling with small operator-non-availability periods, J. Schedul. 15, 2, 127-139. [CrossRef] [Google Scholar]
  • Schmidt G. (2000) Scheduling with limited machine availability, Eur. J. Operational Res. 121, 1, 1-15. [CrossRef] [MathSciNet] [Google Scholar]
  • Sanlaville E., Schmidt G. (1998) Machine scheduling with availability constraints, Acta Informatica 35, 9, 795-811. [CrossRef] [MathSciNet] [Google Scholar]
  • Blazewicz J., Ecker K., Pesch E., Schmidt G., Weglarz J. (2001) Scheduling Computer and Manufacturing Processes, 2nd ed., Springer-Verlag, Berlin, Heidelberg. [Google Scholar]
  • Lebacque V., Brauner N., Celse B., Finke G., Rapine C. (2007) Planification d’expériences dans l’industrie chimique, in Les systèmes de production, applications interdisciplinaires et mutations, Boujut J.-F., Llerena D., Brissaud D. (eds), Hermès Lavoisier, Paris. [Google Scholar]
  • Holzwarth A., Denton P., Zanthoff H., Mirodatos C. (2001) Combinatorial approaches to heterogeneous catalysis: strategies and perspectives for academic research, Catal. Today 67, 4, 309-318. [CrossRef] [Google Scholar]
  • TOPCOMBI (2012) www.topcombi.org. [Google Scholar]
  • Mills P.L., Quiram D.J., Ryley J.F. (2007) Microreactor technology and process miniaturization for catalytic reactions perspective on recent developments and emerging technologies, Chem. Eng. Sci. 62, 24, 6992-7010. [CrossRef] [Google Scholar]
  • Corma A., Moliner M., Serra J.M., Serna P., Baumes L.A. (2006) A New Mapping/Exploration Approach for HT Synthesis of Zeolites, Chem. Mater. 18, 14, 3287-3296. [CrossRef] [Google Scholar]
  • Baumes L.A., Jimenez S., Corma A. (2011) hITeQ: A new workflow-based computing environment for streamlining discovery. Application in materials science, Catal. Today 159, 1, 126-137. [CrossRef] [Google Scholar]
  • Farrusseng D. (2008) High-throughput heterogeneous catalysis, Surf. Sci. Reports 63, 11, 487-513. [CrossRef] [Google Scholar]
  • J2EE Blueprints Digest, http://java.sun.com/developer/technicalArticles/J2EE/DesignEntApps/. [Google Scholar]
  • JavaTM Platform, Enterprise Edition 5 Specification, http://jcp.org/aboutJava/communityprocess/final/jsr244/. [Google Scholar]
  • Krasner G., Pope S. (1988) A cookbook for using the model-view controller user interface paradigm in Smalltalk-80, J. Object Oriented Program. 1, 3, 26-49. [Google Scholar]
  • Reenskaug T. (2003) The Model-View-Controller(MVC)Its Past and Present, http://folk.uio.no/trygver/2003/javazonejaoo/MVC_pattern.pdf. [Google Scholar]
  • MVC, http://addyosmani.com/blog/understanding-mvcand-mvp-for-javascript-and-backbone-developers/. [Google Scholar]
  • Teexma, www.bassetti.fr. [Google Scholar]
  • Cauvin S., Barbieux M., Carrie L., Celse B. (2008) A generic scientific information management system for process engineering, 18th European Symposium on Computer Aided Process Engineering, Comput. Aided Chem. Eng. 25, 931-936. [Google Scholar]
  • Ullman J.D. (1987) Database Theory: Past and Future, Proceedings of the sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, San Diego, California, 23-25 March. [Google Scholar]
  • Vardi M.Y. (2000) Constraint satisfaction and database theory: a tutorial, PODS ‘00: Proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, ACM 2000, Dallas, Texas, 15-17 May. [Google Scholar]
  • Purchase H.C., Andrienko N., Jankun-Kelly T.J., Ward M. (2008) Theoretical Foundations of Information Visualization, Kerren A., Stasko J.T., Fekete J.-D., North C. (eds), Information Visualization, Springer, Berlin, Heidelberg, Lecture Notes Comput. Sci. 4950, 46-64. [Google Scholar]
  • Ji Soo Yi, Youn ah Kang, Stasko J., Jacko J. (2007) Toward a Deeper Understanding of the Role of Interaction in Information Visualization, IEEE Trans. Vis. Comput. Graph. 13, 6, 1224-1231. [CrossRef] [PubMed] [Google Scholar]
  • Keim D., Andrienko G., Fekete J.-D., Georg C., Kohlhammer J., Melançon G. (2008) Visual Analytics: Definition, Process, and Challenges, Kerren A., Stasko J.T., Fekete J.-D., North C. (eds), Information Visualization, Springer, Berlin, Heidelberg, Lecture Notes Comput. Sci 4950, 154-175. [Google Scholar]
  • Shneiderman B. (2002) Inventing Discovery Tools: Combining Information Visualization with Data Mining? IVS 1, 1, 5-12. [Google Scholar]
  • Lungu M., Xu K. (2007) Biomedical Information Visualization, Kerren A., Ebert A., Meyer J. (eds), Human- Centered Visualization Environments, Springer, Berlin, Heidelberg. [Google Scholar]
  • Tukey J.W. (1977) Exploratory Data Analysis, Addison- Wesley Publishing Company. [Google Scholar]
  • Young W.R. (1980) Outliers in Statistical Data, Technometrics 224, 631-631. [CrossRef] [Google Scholar]
  • Bremer R. (1995) Outliers in Statistical Data, Technometrics 37, 1, 117-118. [CrossRef] [Google Scholar]
  • Rousseeuw P.J., Leroy A.M. (1987) References, in Robust Regression and Outlier Detection, John Wiley & Sons, New york. [Google Scholar]
  • Byrd R.H., Gilbert J.C., Nocedal J. (2000) A trust region method based on interior point techniques for nonlinear programming, Math. Program. 89, 1, 149-185. [CrossRef] [MathSciNet] [Google Scholar]
  • Brereton R.G. (2007) Pattern Recognition, in Applied Chemometrics for Scientists, John Wiley & Sons, Ltd, Chichester, UK. [Google Scholar]
  • Cook R.D. (1998) Introduction, in Regression Graphics: Ideas for Studying Regressions Through Graphics, John Wiley & Sons, Inc., Hoboken, NJ, USA. [Google Scholar]
  • Seber G.A.F., Wild C.J. (2005) Model Building, in Nonlinear Regression, John Wiley & Sons, Inc., Hoboken, NJ, USA. [Google Scholar]
  • Seber G.A.F., Wild C.J. (2005) Statistical Inference, in Nonlinear Regression, John Wiley & Sons, Inc., Hoboken, NJ, USA. [Google Scholar]
  • Seber G.A.F., Wild C.J. (2005) Errors-in-Variables Models, in Nonlinear Regression, John Wiley & Sons, Inc., Hoboken, NJ, USA. [Google Scholar]
  • Seber G.A.F., Wild C.J. (2005) Multiresponse Nonlinear Models, in Nonlinear Regression, John Wiley & Sons, Inc., Hoboken, NJ, USA. [Google Scholar]
  • Wilkinson L., Anushka A., Grossman R. (2006) High- Dimensional Visual Analytics: Interactive Exploration Guided by Pairwise Views of Point Distributions, IEEE Trans. Vis. Comput. Graph. 12, 6, 1363-1372. [CrossRef] [PubMed] [Google Scholar]
  • Fekete J.D. (2004) The InfoVis Toolkit, IEEE_infovis, 10th IEEE Symposium on Information Visualization (InfoVis 2004), Austin, TX, 10-12 Oct., IEEE Press, pp. 167-174. [Google Scholar]
  • Ledauphin S., Hanafi M., Qannari E.M. (2004) Simplification and signification of principal components, Chemom. Intel!. Lab. Syst. 74, 2, 277-281. [CrossRef] [Google Scholar]
  • Sahmer K., Vigneau E., Qannari E.M. (2006) A cluster approach to analyze preference data: Choice of the number of clusters, Food Qual. Prefer. 17, 3-4, 257-265. [CrossRef] [Google Scholar]
  • Seber G.A.F., Wild C.J. (1989) Wiley Series in Probability and Statistics, in Nonlinear Regression, John Wiley & Sons, Inc., Hoboken, NJ, USA. [Google Scholar]
  • Vigneau E., Qannari E.M. (2003) Clustering of Variables Around Latent Components, Commun. Stat. Simul. Comput. 32, 4, 1131-1150. [CrossRef] [MathSciNet] [Google Scholar]
  • Seber G.A.F., Wild C.J. (1989) Estimation Methods, in Nonlinear Regression, John Wiley & Sons, Inc., Hoboken, NJ, USA. [Google Scholar]
  • Gatu C., Yanev P.I., Kontoghiorghes E.J. (2007) A graph approach to generate all possible regression submodels, Comput. Stat. Data Anal. 52, 2, 799-815. [CrossRef] [Google Scholar]
  • Celse B. (2007) Reconnaissance de formes pour la conduite, in Supervision des procédés complexes, Gentil S. (ed.), Hermes Science Publications, Lavoisier, Paris. [Google Scholar]
  • Rouleau L., Celse B., Duchêne P., Llido E., Szymanski R. (2005) Multistage cross flow ion exchange process for zeolite: prediction method applied to MFI and MAZ, Proceedings of the 3rd International Zeolite Symposium (3rd FEZA), Stud. Surf. Sci. Catal. 158, 1105-1112. [Google Scholar]
  • Celse B., Bertoncini F., Duval L., Adam L. (2007) Automatic Template fit in comprehensive two dimensional gas chromatography images, Riva Del Garda, 1-1-2007. [Google Scholar]
  • Celse B., Bres S., Adam F., Bertoncini F., Duval L (2007) Polychrom: A Comprehensive GC*GC data handling software, Gulf Coast Conference, Houston, 1-1-2007. Galveston, Texas, USA, 16-17 Oct. [Google Scholar]
  • Celse B., Gueroult P., Moreaud F., Sorbier L. (2007) Determination of microscopic particle size using region growing and active contours: a pratical approach, Reconnaissance des Formes et Intelligence Artificielle, RFIA Congress, Reims, France, 1-1. [Google Scholar]
  • Ould-Chikh S., Celse B., Hemati M., Rouleau L. (2009) Methodology of mechanical characterization of coated spherical materials, Powder Technol. 190, 1-2, 19-24. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.