Dossier: Discovery and Optimization of Catalysts and Solvents for Absorption Using High Throughput Experimentation
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 3, May-June 2013
Dossier: Discovery and Optimization of Catalysts and Solvents for Absorption Using High Throughput Experimentation
Page(s) 445 - 468
DOI https://doi.org/10.2516/ogst/2013109
Published online 09 July 2013
  • Agile Alliance (2012) http://www.agilealliance.org/the-alliance/.
  • Meguro S., Ohnishi T., Lippmaa M., Koinuma H. (2005) Elements of informatics for combinatorial solid-state materials science, Meas. Sci. Technol. 16, 1, 309-316. [CrossRef]
  • Zhang W.H., Fasolka M.J., Karim A., Amis E.J. (2005) An informatics infrastructure for combinatorial and high- throughput materials research built on open source code, Meas. Sci. Technol. 16, 1, 261-269. [CrossRef]
  • Farrusseng D., Baumes L., Vauthey I., Hayaud C., Denton P., Mirodatos C. (2002) The Combinatorial Approach for Heterogeneous Catalysis: A Challenge for Academic Research, in Principles and Methods for Accelerated Catalyst Design and Testing, Springer, The Netherlands.
  • Derouane E. (2002) Principles and Methods for Accelerated Catalyst Design, Preparation, Testing, and Development: Conclusions of the Nato Advanced Study Institute, in Principles and Methods for Accelerated Catalyst Design and Testing, Springer, The Netherlands.
  • Ausfelder F., Baumes L.A., Farrusseng D. (2011) Preface, Catal. Today 159, 1, 1. [CrossRef]
  • Adams N., Schubert U.S. (2004) Software solutions for combinatorial and high-throughput materials and polymer research, Macromol. Rapid Comm. 25, 1, 48-58. [CrossRef]
  • Lab VIEW Graphical Instrument Control, http://www.ni.com/.
  • Frantzen A., Sanders D., Scheidtmann J., Simon U., Maier W.F. (2005) A flexible database for combinatorial and high-throughput materials science, QSAR Comb. Sci. 24, 1, 22-28. [CrossRef]
  • Farrusseng D., Clerc F., Mirodatos C., Azam N., Gilardoni F., Thybaut J.W., Balasubramaniam P., Marin G.B. (2007) Development of an integrated informatics toolbox: HT kinetic and virtual screening, Comb. Chem. High Throughput Screening 10, 2, 85-97. [CrossRef]
  • Jiang J., Jorda J.L., Yu J., Baumes L.A., Mugnaioli E., Diaz-Cabanas M.J., Kolb U., Corma A. (2011) Synthesis and Structure Determination of the Hierarchical MesoMicroporous Zeolite ITQ-43, Science 333, 6046, 1131-1134. [CrossRef] [PubMed]
  • Fecant A. (2007) Synthesis of new zeolites with pore sizes of 10 and 12 tetrahedric atoms, PHD.
  • Baumes L.A., Moliner M., Corma A. (2007) Prediction of ITQ-21 zeolite phase crystallinity: Parametric versus non- parametric strategies, QSAR Comb. Sci. 26, 2, 255-272. [CrossRef]
  • Barr G., Dong W., Gilmore C.J. (2004) PoIySNAP: a computer program for analysing high-throughput powder diffraction data, J. Appl. Crystallogr. 37, 4, 658-664. [CrossRef]
  • Baumes L.A., Kruger F., Jimenez S., Collet P., Corma A. (2011) Boosting theoretical zeolitic framework generation for the determination of new materials structures using GPU programming, Phys. Chem. Chem. Phys. 13, 10, 4674-4678. [CrossRef] [PubMed]
  • Deem M.W., Pophale R., Cheeseman P.A., Earl D.J. (2009) Computational Discovery of New Zeolite-Like Materials, J. Phys. Chem. C 113, 51, 21353-21360. [CrossRef]
  • Cawse J.N., Gazzola G., Packard N. (2011) Efficient discovery and optimization of complex high-throughput experiments, Catal. Today 159, 1, 55-63. [CrossRef]
  • Amanna A.E., Ali D., Fitch D.G., Reed J.H. (2012) Parametric optimization of software defined radio configurations using design of experiments, Analog Integr. Circuits Signal Process. 73, 2, 637-648. [CrossRef]
  • Kleijnen J.P.C. (2005) An overview of the design and analysis of simulation experiments for sensitivity analysis, Eur. J. Operation. Res. 164, 2, 287-300. [CrossRef]
  • Straetemans R., O’Brien T., Wouters L., Van Dun J., Janicot M., Bijnens L., Burzykowski T., Aerts M. (2005) Design and analysis of drug combination experiments, Biom. J. 47, 3, 299-308. [CrossRef] [MathSciNet] [PubMed]
  • King C.W. (2006) Statistics for experimenters, design, innovation and discovery, AIChE J. 52, 7, 2657-2657. [CrossRef]
  • Mazerolles G., Mathieu D., Phantanluu R., Siouffi A.M. (1989) Computer-Assisted Optimization with Nemrod Software, J. Chromatogr. 485, 433-451. [CrossRef]
  • Brucker P., Gladky A., Hoogeveen H., Kovalyov M.Y., Potts C., Tautenhahn T., Van De Velde S. (1998) Scheduling a batching machine, J. Schedul. 1, 31-55. [CrossRef] [MathSciNet]
  • Potts C.N., Kovalyov M.Y. (2000) Scheduling with batching: A review, Eur. J. Operation. Res. 120, 2, 228-249. [CrossRef]
  • Boudhar M., Finke G. (2000) Scheduling on a batch machine with job compatibilities, Belgian J. Operations Res. 40, 69-80.
  • Brauner N., Finke G., Lehoux-Lebacque V., Rapine C., Kellerer H., Potts C., Strusevich V. (2009) Operator non-availability periods, 40R-Q J. Oper. Res. 7, 3, 239-253. [CrossRef] [MathSciNet]
  • Brauner N., Finke G., Lehoux-Lebacque V., Rapine C., Kellerer H., Potts C., Strusevich V. (2009) Operator non- availability periods, 4OR: A Quarterly Journal of Operations Research 7, 3, 239-253. [CrossRef] [MathSciNet]
  • Rapine C., Brauner N., Finke G., Lebacque V. (2012) Single machine scheduling with small operator-non-availability periods, J. Schedul. 15, 2, 127-139. [CrossRef]
  • Schmidt G. (2000) Scheduling with limited machine availability, Eur. J. Operational Res. 121, 1, 1-15. [CrossRef] [MathSciNet]
  • Sanlaville E., Schmidt G. (1998) Machine scheduling with availability constraints, Acta Informatica 35, 9, 795-811. [CrossRef] [MathSciNet]
  • Blazewicz J., Ecker K., Pesch E., Schmidt G., Weglarz J. (2001) Scheduling Computer and Manufacturing Processes, 2nd ed., Springer-Verlag, Berlin, Heidelberg.
  • Lebacque V., Brauner N., Celse B., Finke G., Rapine C. (2007) Planification d’expériences dans l’industrie chimique, in Les systèmes de production, applications interdisciplinaires et mutations, Boujut J.-F., Llerena D., Brissaud D. (eds), Hermès Lavoisier, Paris.
  • Holzwarth A., Denton P., Zanthoff H., Mirodatos C. (2001) Combinatorial approaches to heterogeneous catalysis: strategies and perspectives for academic research, Catal. Today 67, 4, 309-318. [CrossRef]
  • TOPCOMBI (2012) www.topcombi.org.
  • Mills P.L., Quiram D.J., Ryley J.F. (2007) Microreactor technology and process miniaturization for catalytic reactions perspective on recent developments and emerging technologies, Chem. Eng. Sci. 62, 24, 6992-7010. [CrossRef]
  • Corma A., Moliner M., Serra J.M., Serna P., Baumes L.A. (2006) A New Mapping/Exploration Approach for HT Synthesis of Zeolites, Chem. Mater. 18, 14, 3287-3296. [CrossRef]
  • Baumes L.A., Jimenez S., Corma A. (2011) hITeQ: A new workflow-based computing environment for streamlining discovery. Application in materials science, Catal. Today 159, 1, 126-137. [CrossRef]
  • Farrusseng D. (2008) High-throughput heterogeneous catalysis, Surf. Sci. Reports 63, 11, 487-513. [CrossRef]
  • J2EE Blueprints Digest, http://java.sun.com/developer/technicalArticles/J2EE/DesignEntApps/.
  • JavaTM Platform, Enterprise Edition 5 Specification, http://jcp.org/aboutJava/communityprocess/final/jsr244/.
  • Krasner G., Pope S. (1988) A cookbook for using the model-view controller user interface paradigm in Smalltalk-80, J. Object Oriented Program. 1, 3, 26-49.
  • Reenskaug T. (2003) The Model-View-Controller(MVC)Its Past and Present, http://folk.uio.no/trygver/2003/javazonejaoo/MVC_pattern.pdf.
  • MVC, http://addyosmani.com/blog/understanding-mvcand-mvp-for-javascript-and-backbone-developers/.
  • Teexma, www.bassetti.fr.
  • Cauvin S., Barbieux M., Carrie L., Celse B. (2008) A generic scientific information management system for process engineering, 18th European Symposium on Computer Aided Process Engineering, Comput. Aided Chem. Eng. 25, 931-936.
  • Ullman J.D. (1987) Database Theory: Past and Future, Proceedings of the sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, San Diego, California, 23-25 March.
  • Vardi M.Y. (2000) Constraint satisfaction and database theory: a tutorial, PODS ‘00: Proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, ACM 2000, Dallas, Texas, 15-17 May.
  • Purchase H.C., Andrienko N., Jankun-Kelly T.J., Ward M. (2008) Theoretical Foundations of Information Visualization, Kerren A., Stasko J.T., Fekete J.-D., North C. (eds), Information Visualization, Springer, Berlin, Heidelberg, Lecture Notes Comput. Sci. 4950, 46-64.
  • Ji Soo Yi, Youn ah Kang, Stasko J., Jacko J. (2007) Toward a Deeper Understanding of the Role of Interaction in Information Visualization, IEEE Trans. Vis. Comput. Graph. 13, 6, 1224-1231. [CrossRef] [PubMed]
  • Keim D., Andrienko G., Fekete J.-D., Georg C., Kohlhammer J., Melançon G. (2008) Visual Analytics: Definition, Process, and Challenges, Kerren A., Stasko J.T., Fekete J.-D., North C. (eds), Information Visualization, Springer, Berlin, Heidelberg, Lecture Notes Comput. Sci 4950, 154-175.
  • Shneiderman B. (2002) Inventing Discovery Tools: Combining Information Visualization with Data Mining? IVS 1, 1, 5-12.
  • Lungu M., Xu K. (2007) Biomedical Information Visualization, Kerren A., Ebert A., Meyer J. (eds), Human- Centered Visualization Environments, Springer, Berlin, Heidelberg.
  • Tukey J.W. (1977) Exploratory Data Analysis, Addison- Wesley Publishing Company.
  • Young W.R. (1980) Outliers in Statistical Data, Technometrics 224, 631-631. [CrossRef]
  • Bremer R. (1995) Outliers in Statistical Data, Technometrics 37, 1, 117-118. [CrossRef]
  • Rousseeuw P.J., Leroy A.M. (1987) References, in Robust Regression and Outlier Detection, John Wiley & Sons, New york.
  • Byrd R.H., Gilbert J.C., Nocedal J. (2000) A trust region method based on interior point techniques for nonlinear programming, Math. Program. 89, 1, 149-185. [CrossRef] [MathSciNet]
  • Brereton R.G. (2007) Pattern Recognition, in Applied Chemometrics for Scientists, John Wiley & Sons, Ltd, Chichester, UK.
  • Cook R.D. (1998) Introduction, in Regression Graphics: Ideas for Studying Regressions Through Graphics, John Wiley & Sons, Inc., Hoboken, NJ, USA.
  • Seber G.A.F., Wild C.J. (2005) Model Building, in Nonlinear Regression, John Wiley & Sons, Inc., Hoboken, NJ, USA.
  • Seber G.A.F., Wild C.J. (2005) Statistical Inference, in Nonlinear Regression, John Wiley & Sons, Inc., Hoboken, NJ, USA.
  • Seber G.A.F., Wild C.J. (2005) Errors-in-Variables Models, in Nonlinear Regression, John Wiley & Sons, Inc., Hoboken, NJ, USA.
  • Seber G.A.F., Wild C.J. (2005) Multiresponse Nonlinear Models, in Nonlinear Regression, John Wiley & Sons, Inc., Hoboken, NJ, USA.
  • Wilkinson L., Anushka A., Grossman R. (2006) High- Dimensional Visual Analytics: Interactive Exploration Guided by Pairwise Views of Point Distributions, IEEE Trans. Vis. Comput. Graph. 12, 6, 1363-1372. [CrossRef] [PubMed]
  • Fekete J.D. (2004) The InfoVis Toolkit, IEEE_infovis, 10th IEEE Symposium on Information Visualization (InfoVis 2004), Austin, TX, 10-12 Oct., IEEE Press, pp. 167-174.
  • Ledauphin S., Hanafi M., Qannari E.M. (2004) Simplification and signification of principal components, Chemom. Intel!. Lab. Syst. 74, 2, 277-281. [CrossRef]
  • Sahmer K., Vigneau E., Qannari E.M. (2006) A cluster approach to analyze preference data: Choice of the number of clusters, Food Qual. Prefer. 17, 3-4, 257-265. [CrossRef]
  • Seber G.A.F., Wild C.J. (1989) Wiley Series in Probability and Statistics, in Nonlinear Regression, John Wiley & Sons, Inc., Hoboken, NJ, USA.
  • Vigneau E., Qannari E.M. (2003) Clustering of Variables Around Latent Components, Commun. Stat. Simul. Comput. 32, 4, 1131-1150. [CrossRef] [MathSciNet]
  • Seber G.A.F., Wild C.J. (1989) Estimation Methods, in Nonlinear Regression, John Wiley & Sons, Inc., Hoboken, NJ, USA.
  • Gatu C., Yanev P.I., Kontoghiorghes E.J. (2007) A graph approach to generate all possible regression submodels, Comput. Stat. Data Anal. 52, 2, 799-815. [CrossRef]
  • Celse B. (2007) Reconnaissance de formes pour la conduite, in Supervision des procédés complexes, Gentil S. (ed.), Hermes Science Publications, Lavoisier, Paris.
  • Rouleau L., Celse B., Duchêne P., Llido E., Szymanski R. (2005) Multistage cross flow ion exchange process for zeolite: prediction method applied to MFI and MAZ, Proceedings of the 3rd International Zeolite Symposium (3rd FEZA), Stud. Surf. Sci. Catal. 158, 1105-1112.
  • Celse B., Bertoncini F., Duval L., Adam L. (2007) Automatic Template fit in comprehensive two dimensional gas chromatography images, Riva Del Garda, 1-1-2007.
  • Celse B., Bres S., Adam F., Bertoncini F., Duval L (2007) Polychrom: A Comprehensive GC*GC data handling software, Gulf Coast Conference, Houston, 1-1-2007. Galveston, Texas, USA, 16-17 Oct.
  • Celse B., Gueroult P., Moreaud F., Sorbier L. (2007) Determination of microscopic particle size using region growing and active contours: a pratical approach, Reconnaissance des Formes et Intelligence Artificielle, RFIA Congress, Reims, France, 1-1.
  • Ould-Chikh S., Celse B., Hemati M., Rouleau L. (2009) Methodology of mechanical characterization of coated spherical materials, Powder Technol. 190, 1-2, 19-24. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.