Dossier: Discovery and Optimization of Catalysts and Solvents for Absorption Using High Throughput Experimentation
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 3, May-June 2013
Dossier: Discovery and Optimization of Catalysts and Solvents for Absorption Using High Throughput Experimentation
Page(s) 487 - 504
Published online 09 August 2013
  • Farrusseng D. (2008) High-throughput heterogeneous catalysis, Surf. Sci. Rep. 63, 11, 487-513. [CrossRef] [Google Scholar]
  • Maxwell I.E., van den Brink P., Downing R.S., Sijpkes A. H., Gomez S., Maschmeyer T. (2003) High-Throughput Technologies to Enhance Innovation in Catalysis: Advances in the Design, Synthesis, and Characterization of Heterogeneous Catalysts, Topics Catal. 24, 1-4, 125-135. [CrossRef] [Google Scholar]
  • Maier W.F., Stowe K., Sieg S. (2007) Combinatorial and high-throughput materials science, Angew. Chem. Int. Ed. Engl. 46, 32, 6016-6067. [CrossRef] [PubMed] [Google Scholar]
  • Schunk S.A., Demuth D., Cross A., Gerlach O., Hass A., Klein J., Newsam J.M., Sundermann A., Stichert W., Strehlau W., Vietze U., Zech T. (2004) in High-throughput screening in chemical catalysis, Hagemeyer A., Strasser P., Volpe A. (eds),Wiely-VCH, Weinheim, pp. 19-62. [Google Scholar]
  • de Vries J.G., de Vries A.H.M. (2003) The Power of High- Throughput Experimentation in Homogeneous Catalysis Research for Fine Chemicals, Eur. J. Org. Chem. 2003, 5, 799-811. [CrossRef] [Google Scholar]
  • Klanner C., Farrusseng D., Baumes L., Lengliz M., Mirodatos C., Schiith F. (2004) The Development of Descriptors for Solids: Teaching "Catalytic Intuition" to a Computer, Angew. Chem. Int. Ed. Engl. 43, 40, 5347-5349. [CrossRef] [Google Scholar]
  • Klanner C., Farrusseng D., Baumes L., Mirodatos C., Schiith F. (2003) How to Design Diverse Libraries of Solid Catalysts?, QSAR Comb. Sci. 22, 7, 729-736. [CrossRef] [Google Scholar]
  • Baumes L., Farrusseng D., Lengliz M., Mirodatos C. (2004) Using Artificial Neural Networks to Boost High- throughput Discovery in Heterogeneous Catalysis, QSAR Comb. Sci. 23, 9, 767-778. [CrossRef] [Google Scholar]
  • Corma A., Serra J.M., Serna P., Moliner M. (2005) Integrating high-throughput characterization into combinatorial heterogeneous catalysis: unsupervised construction of quantitative structure/property relationship models, J. Catal. 232, 335-341. [CrossRef] [Google Scholar]
  • Corma A., Serra J.M., Serna P., Valero S., Argente E., Botti V. (2005) Optimisation of olefin epoxidation catalysts with the application of high-throughput and genetic algorithms assisted by artificial neural networks (softcomputing techniques), J. Catal. 229, 2, 513-524. [CrossRef] [Google Scholar]
  • Ouqour A., Coudurier G., Vedrine J.C. (1993) Acid—base properties of metallic oxide catalysts studied by conversion of propan-2-ol, J. Chem. Soc., Faraday Trans. 89, 3151-3155. [CrossRef] [Google Scholar]
  • Tétényi P., Babernics L., Schachter K. (1968) Kinetics of the catalytic dehydrogenation of hydroaromatic compounds, X, Acta Chimica Hungarica: J. Hungarican Academy Scientiarum Hungaricae 58, 3, 321-335. [Google Scholar]
  • Benkhaled M., Descorme C., Duprez D., Morin S., Thomazeau C., Uzio D. (2008) Study of hydrogen surface mobility and hydrogenation reactions over alumina-supported palladium catalysts, Appl. Catal. A: Gen. 346, 1-2, 36-43. [CrossRef] [Google Scholar]
  • Guillon E., Didillon B., Uzio D. (2006) Réduction des aromatiques sur catalyseurs à base de platine : influence d’un second métal sur la résistance au soufre, Aromatic Reduction Over Supported Modified Platinum Catalysts Influence of a Second Metal on the Sulfur Resistance of Platinum, Oil Gas Sci. Technol.— Rev. IFP 61, 3, 405-413. [CrossRef] [EDP Sciences] [Google Scholar]
  • Del Angel G., Bertin V., Bosch P., Gomez R., Gonzalez R. D. (1991) Bimetallic Pt-Ru Silica Supported Catalysts: Preparation Implications on Structure and Catalytic Activity, New J. Chem. 15, 8-9, 643-647. [Google Scholar]
  • Martin D., Duprez D. (1997) Evaluation of the acid-base surface properties of several oxides and supported metal catalysts by means of model reactions, J. Mol. Catal. A: Chemical 118, 1, 113-128. [CrossRef] [Google Scholar]
  • Morra G., Farrusseng D., Guillon E., Morin S., Bouchy C., Mirodatos C. (2010) Acidity Characterization of Catalyst Libraries by High-Throughput Testing, Topics Catol. 53, 1-2, 49-56. [CrossRef] [Google Scholar]
  • Bourdillon G., Gueguen C., Guisnet M. (1990) Characterization of acid catalysts by means of model reactions: I. Acid strength necessary for the catalysis of various hydrocarbon reactions, Appl. Catal. 61, 1, 123-139. [CrossRef] [Google Scholar]
  • Schmitz P.J., Kudla R.J., Drews A.R., Chen A.E., Lowe-Ma C.K., McCabe R.W., Schneider W.F., Goralski Jr C. T. (2006) NO oxidation over supported Pt: Impact of precursor, support, loading, and processing conditions evaluated via high throughput experimentation, Appl. Catal. B: Env. 67, 3-4, 246-256. [CrossRef] [Google Scholar]
  • Marin G.B., Yablonsky G.S. (2011) Kinetics of Chemical Reactions, Wiley-VCH, Weinhem. [Google Scholar]
  • Morra G., Desmartin-Chomel A., Daniel C., Ravon U., Farrusseng D., Cowan R., Krusche M., Mirodatos C. (2008) High-throughput gas phase transient reactor for catalytic material characterization and kinetic studies, Chem. Eng. J. 138, 1-3, 379-388. [CrossRef] [Google Scholar]
  • Morra G., Farrusseng D., Guillon E., Morin S., Bouchy C., Duchene P., Mirodatos C. (2008) Deactivation handling in a high-throughput kinetic study of o-xylene hydrogenation, fatal. Today 137, 1, 71-79. [CrossRef] [Google Scholar]
  • Bouchy C., Duchêne P., Faraj A. (2013) Using High Throughput Experimentation Approach for the Evaluation of Dehydrogenation Catalysts: Potential Interests and Drawbacks, Oil Gas Sci. Technol. — Rev. IFP 68, 3. [CrossRef] [EDP Sciences] [Google Scholar]
  • Smeds S., Salmi T., Murzin D. (1996) Gas phase hydrogenation of o − and p-xylene on Ni/Al203 - Kinetic behaviour, Appl. Catal. A: Gen. 145, 1-2, 253-265. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.