Dossier: Discovery and Optimization of Catalysts and Solvents for Absorption Using High Throughput Experimentation
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 3, May-June 2013
Dossier: Discovery and Optimization of Catalysts and Solvents for Absorption Using High Throughput Experimentation
Page(s) 487 - 504
Published online 09 August 2013
  • Farrusseng D. (2008) High-throughput heterogeneous catalysis, Surf. Sci. Rep. 63, 11, 487-513. [CrossRef]
  • Maxwell I.E., van den Brink P., Downing R.S., Sijpkes A. H., Gomez S., Maschmeyer T. (2003) High-Throughput Technologies to Enhance Innovation in Catalysis: Advances in the Design, Synthesis, and Characterization of Heterogeneous Catalysts, Topics Catal. 24, 1-4, 125-135. [CrossRef]
  • Maier W.F., Stowe K., Sieg S. (2007) Combinatorial and high-throughput materials science, Angew. Chem. Int. Ed. Engl. 46, 32, 6016-6067. [CrossRef] [PubMed]
  • Schunk S.A., Demuth D., Cross A., Gerlach O., Hass A., Klein J., Newsam J.M., Sundermann A., Stichert W., Strehlau W., Vietze U., Zech T. (2004) in High-throughput screening in chemical catalysis, Hagemeyer A., Strasser P., Volpe A. (eds),Wiely-VCH, Weinheim, pp. 19-62.
  • de Vries J.G., de Vries A.H.M. (2003) The Power of High- Throughput Experimentation in Homogeneous Catalysis Research for Fine Chemicals, Eur. J. Org. Chem. 2003, 5, 799-811. [CrossRef]
  • Klanner C., Farrusseng D., Baumes L., Lengliz M., Mirodatos C., Schiith F. (2004) The Development of Descriptors for Solids: Teaching "Catalytic Intuition" to a Computer, Angew. Chem. Int. Ed. Engl. 43, 40, 5347-5349. [CrossRef]
  • Klanner C., Farrusseng D., Baumes L., Mirodatos C., Schiith F. (2003) How to Design Diverse Libraries of Solid Catalysts?, QSAR Comb. Sci. 22, 7, 729-736. [CrossRef]
  • Baumes L., Farrusseng D., Lengliz M., Mirodatos C. (2004) Using Artificial Neural Networks to Boost High- throughput Discovery in Heterogeneous Catalysis, QSAR Comb. Sci. 23, 9, 767-778. [CrossRef]
  • Corma A., Serra J.M., Serna P., Moliner M. (2005) Integrating high-throughput characterization into combinatorial heterogeneous catalysis: unsupervised construction of quantitative structure/property relationship models, J. Catal. 232, 335-341. [CrossRef]
  • Corma A., Serra J.M., Serna P., Valero S., Argente E., Botti V. (2005) Optimisation of olefin epoxidation catalysts with the application of high-throughput and genetic algorithms assisted by artificial neural networks (softcomputing techniques), J. Catal. 229, 2, 513-524. [CrossRef]
  • Ouqour A., Coudurier G., Vedrine J.C. (1993) Acid—base properties of metallic oxide catalysts studied by conversion of propan-2-ol, J. Chem. Soc., Faraday Trans. 89, 3151-3155. [CrossRef]
  • Tétényi P., Babernics L., Schachter K. (1968) Kinetics of the catalytic dehydrogenation of hydroaromatic compounds, X, Acta Chimica Hungarica: J. Hungarican Academy Scientiarum Hungaricae 58, 3, 321-335.
  • Benkhaled M., Descorme C., Duprez D., Morin S., Thomazeau C., Uzio D. (2008) Study of hydrogen surface mobility and hydrogenation reactions over alumina-supported palladium catalysts, Appl. Catal. A: Gen. 346, 1-2, 36-43. [CrossRef]
  • Guillon E., Didillon B., Uzio D. (2006) Réduction des aromatiques sur catalyseurs à base de platine : influence d’un second métal sur la résistance au soufre, Aromatic Reduction Over Supported Modified Platinum Catalysts Influence of a Second Metal on the Sulfur Resistance of Platinum, Oil Gas Sci. Technol.— Rev. IFP 61, 3, 405-413. [CrossRef] [EDP Sciences]
  • Del Angel G., Bertin V., Bosch P., Gomez R., Gonzalez R. D. (1991) Bimetallic Pt-Ru Silica Supported Catalysts: Preparation Implications on Structure and Catalytic Activity, New J. Chem. 15, 8-9, 643-647.
  • Martin D., Duprez D. (1997) Evaluation of the acid-base surface properties of several oxides and supported metal catalysts by means of model reactions, J. Mol. Catal. A: Chemical 118, 1, 113-128. [CrossRef]
  • Morra G., Farrusseng D., Guillon E., Morin S., Bouchy C., Mirodatos C. (2010) Acidity Characterization of Catalyst Libraries by High-Throughput Testing, Topics Catol. 53, 1-2, 49-56. [CrossRef]
  • Bourdillon G., Gueguen C., Guisnet M. (1990) Characterization of acid catalysts by means of model reactions: I. Acid strength necessary for the catalysis of various hydrocarbon reactions, Appl. Catal. 61, 1, 123-139. [CrossRef]
  • Schmitz P.J., Kudla R.J., Drews A.R., Chen A.E., Lowe-Ma C.K., McCabe R.W., Schneider W.F., Goralski Jr C. T. (2006) NO oxidation over supported Pt: Impact of precursor, support, loading, and processing conditions evaluated via high throughput experimentation, Appl. Catal. B: Env. 67, 3-4, 246-256. [CrossRef]
  • Marin G.B., Yablonsky G.S. (2011) Kinetics of Chemical Reactions, Wiley-VCH, Weinhem.
  • Morra G., Desmartin-Chomel A., Daniel C., Ravon U., Farrusseng D., Cowan R., Krusche M., Mirodatos C. (2008) High-throughput gas phase transient reactor for catalytic material characterization and kinetic studies, Chem. Eng. J. 138, 1-3, 379-388. [CrossRef]
  • Morra G., Farrusseng D., Guillon E., Morin S., Bouchy C., Duchene P., Mirodatos C. (2008) Deactivation handling in a high-throughput kinetic study of o-xylene hydrogenation, fatal. Today 137, 1, 71-79. [CrossRef]
  • Bouchy C., Duchêne P., Faraj A. (2013) Using High Throughput Experimentation Approach for the Evaluation of Dehydrogenation Catalysts: Potential Interests and Drawbacks, Oil Gas Sci. Technol. — Rev. IFP 68, 3. [CrossRef] [EDP Sciences]
  • Smeds S., Salmi T., Murzin D. (1996) Gas phase hydrogenation of o − and p-xylene on Ni/Al203 - Kinetic behaviour, Appl. Catal. A: Gen. 145, 1-2, 253-265. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.