Dossier: InMoTher 2012 - Industrial Use of Molecular Thermodynamics
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Numéro 2, March-April 2013
Dossier: InMoTher 2012 - Industrial Use of Molecular Thermodynamics
Page(s) 309 - 318
DOI https://doi.org/10.2516/ogst/2012047
Publié en ligne 4 mars 2013
  • Cushman J.H. (1997) The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles, Kluwer Academic Publishers, London. [Google Scholar]
  • Guéguen Y., Palciauskas V. (1994) Introduction to the physics of rock, University Press, Princeton. [Google Scholar]
  • Gregg S.J., Sing K.S.W. (1982) Adsorption, Surface Area and Porosimetry, Academic Press, New York. [Google Scholar]
  • Rouquerol F., Rouquerol J., Sing K.S.W. (1999) Adsorption by Powders and Porous Solids, Academic Press, London. [Google Scholar]
  • Zsigmondy R. (1911) Über die Struktur des Gels der Kieselsäure. Theorie der Entwässerung, Z. Anorg. Allg. Chem. 71, 356. [CrossRef] [Google Scholar]
  • Cohan L.H. (1938) Sorption hysteresis and the vapor pressure of concave surfaces, J. Am. Chem. Soc. 60, 433-435. [CrossRef] [Google Scholar]
  • Coasne B., Grosman A., Ortega C., Simon M. (2002) Adsorption in noninterconnected pores open at one or at both ends: A reconsideration of the origin of the hysteresis phenomenon, Phys. Rev. Lett. 88, 256102. [CrossRef] [PubMed] [Google Scholar]
  • Grosman A., Ortega C. (2005) Nature of capillary condensation and evaporation processes in ordered porous materials, Langmuir 21, 10515-10521. [CrossRef] [PubMed] [Google Scholar]
  • Everett D.H., Whitton W.I. (1952) A general approach to hysteresis, Trans. Faraday Soc. 48, 749. [CrossRef] [Google Scholar]
  • Everett D.H., Smith F.W. (1954) A general approach to hysteresis. Part 2: Development of the domain theory, Trans. Faraday Soc. 50, 187. [CrossRef] [Google Scholar]
  • Everett D.H. (1954) A general approach to hysteresis. Part 3: Formal treatment of the independent domain model of hysteresis, Trans. Faraday Soc. 50, 1077. [CrossRef] [Google Scholar]
  • Mason G. (1982) The effect of pore space connectivity on the hysteresis of capillary condensation in adsorption desorption isotherms, J. Colloid Interface Sci. 88, 36-46. [CrossRef] [Google Scholar]
  • Mason G. (1983) A model of adsorption-desorption hysteresis in which hysteresis is primarily developed by the interconnections in a network of pores, Proc. R. Soc. Lond. A 390, 47-72. [CrossRef] [Google Scholar]
  • Swift M.R., Cheng E., Cole M.W., Banavar J.R. (1993) Phase transitions in a model porous medium, Phys. Rev. B 48, 3124. [CrossRef] [Google Scholar]
  • Kierlik E., Rosinberg M.L., Tarjus G., Viot P. (2001) Equilibrium and out-of-equilibrium (hysteretic) behavior of fluids in disordered porous materials: Theoretical predictions, Phys. Chem. Chem. Phys. 3, 1201-1206. [CrossRef] [Google Scholar]
  • Kierlik E., Monson P.A., Rosinberg M.L. et al. (2001) Capillary condensation in disordered porous materials: Hysteresis versus equilibrium behavior, Phys. Rev. Lett. 87, 055701. [CrossRef] [PubMed] [Google Scholar]
  • Detcheverry F., Kierlik E., Rosinberg M.L., Tarjus G. (2003) Local mean-field study of capillary condensation in silica aerogels, Phys. Rev. E 68, 061504. [CrossRef] [Google Scholar]
  • Detcheverry F., Kierlik E., Rosinberg M.L., Tarjus G. (2006) Gas adsorption and desorption in silica aerogels: a theoretical study of scattering properties, Phys. Rev. E 73, 041511. [CrossRef] [Google Scholar]
  • Beck J.S., Vartuli J.C., Roth W.J. et al. (1992) A new family of mesoporous molecular sieves prepared with liquid cristal templates, J. Am. Chem. Soc. 114, 10834-10843. [CrossRef] [Google Scholar]
  • Kresge C.T., Leonowicz M.E., Roth W.J. et al. (1992) Nature 359, 710-712. [CrossRef] [Google Scholar]
  • Uhlir A. (1956) Electrolytic shaping of germanium and silicon, Bell Syst. Tech. J. 35, 333-347. [Google Scholar]
  • Maddox M.W., Olivier J.P., Gubbins K.E. (1997) Characterization of MCM-41 using molecular simulation: heterogeneity effects, Langmuir 13, 1737-1745. [CrossRef] [Google Scholar]
  • Edler K.J., Reynolds P.A., White J.W. (1998) Small-angle neutron scattering studies on the mesoporous molecular sieve MCM-41, J. Phys. Chem. B 102, 3676-3683. [CrossRef] [Google Scholar]
  • Berenguer-Murcia A., Garcia-Martinez J., Cazorla-Amoros D. et al. (2002) in Studies in Surface Science and Catalysis, Rodriguez Reinoso F., McEnaney B., Rouquerol J., Unger K. (eds), Elsevier Science, Amsterdam, Vol. 144, pp. 83-90. [Google Scholar]
  • Fenelonov V.B., Derevyankin A.Y., Kirik S.D. et al. (2001) Comparative textural study of highly ordered silicate and aluminosilicate mesoporous mesophase materials having different pore sizes, Micropor. Mesopor. Mater. 44-45, 33-40. [CrossRef] [Google Scholar]
  • Sonwane C.G., Jones C.W., Ludovice P.J. (2005) A model for the structure of MCM-41 incorporating surface roughness, J. Phys. Chem. B 109, 23395-23404. [CrossRef] [PubMed] [Google Scholar]
  • Puibasset J. (2005) Grand potential, Helmholtz free energy and entropy calculation in heterogeneous cylindrical pores by the grand canonical Monte Carlo simulation method, J. Phys. Chem. B 109, 480-487. [CrossRef] [PubMed] [Google Scholar]
  • Puibasset J. (2005) Phase coexistence in heterogeneous porous media: A new extension to Gibbs Ensemble monte carlo simulation method, J. Chem. Phys. 122, 134710. [CrossRef] [PubMed] [Google Scholar]
  • Puibasset J. (2005) Capillary condensation in a geometrically and a chemically heterogeneous pore: a molecular simulation study, J. Phys. Chem. B 109, 4700-4706. [CrossRef] [PubMed] [Google Scholar]
  • Puibasset J. (2005) Thermodynamic characterization of fluids confined in heterogeneous pores by Monte Carlo simulations in the grand canonical and the isobaric-isothermal ensembles, J. Phys. Chem. B 109, 8185-8194. [CrossRef] [PubMed] [Google Scholar]
  • Nicholson D., Parsonage N.G. (1982) Computer Simulation and the Statistical Mechanics of Adsorption, Academic Press, London. [Google Scholar]
  • Allen M.P., Tildesley D.J. (1987) Computer Simulation of Liquids, Clarendon Press, Oxford. [Google Scholar]
  • Brown A.J. (1963) PhD Thesis, University of Bristol. [Google Scholar]
  • Gelb L.D., Gubbins K.E., Radhakrishnan R., SliwinskaBartkowiak M. (1999) Phase separation in confined systems, Rep. Prog. Phys. 62, 1573-1659. [CrossRef] [Google Scholar]
  • Sarkisov L., Monson P.A. (2001) Modeling of adsorption and desorption in pores of simple geometry using molecular dynamics, Langmuir 17, 7600-7604. [CrossRef] [Google Scholar]
  • Page K.S., Monson P.A. (1996) Monte Carlo calculations of phase diagrams for a fluid confined in a disordered porous material, Phys. Rev. E 54, 6557-6564. [CrossRef] [Google Scholar]
  • Puibasset J., Pellenq R.J.-M. (2004) A grand canonical Monte Carlo simulation study of water adsorption on vycor-like hydrophilic mesoporous silica at different temperatures, J. Phys. Condens. Matter 16, S5329-S5343. [CrossRef] [Google Scholar]
  • Puibasset J., Pellenq R.J.-M. (2004) A comparison of water adsorption on ordered and disordered silica substrates, Phys. Chem. Chem. Phys. 6, 1933-1937. [CrossRef] [Google Scholar]
  • Puibasset J. (2006) Influence of surface chemical heterogeneities on adsorption/desorption hysteresis and coexistence diagram of metastable states within cylindrical pores, J. Chem. Phys. 125, 074707. [CrossRef] [PubMed] [Google Scholar]
  • Detcheverry F., Rosinberg M.L., Tarjus G. (2005) Metastable states and T = 0 hysteresis in the random-field Ising model on random graphs, Eur. Phys. J. B 44, 327-343. [CrossRef] [EDP Sciences] [OGST] [Google Scholar]
  • Pérez-Reche F.J., Rosinberg M.L., Tarjus G. (2008) Numerical approach to metastable states in the zero-temperature random- field Ising model, Phys. Rev. B 77, 064422. [CrossRef] [Google Scholar]
  • Rosinberg M.L., Tarjus G., Pérez-Reche F.J. (2009) The T = 0 random-field Ising model on a Bethe lattice with large coordination number: Hysteresis and metastable states, J. Stat. Mech. P03003. [Google Scholar]
  • Puibasset J. (2011) Numerical characterization of the density of metastable states within the hysteresis loop in disordered systems, J. Phys. Condens. Matter 23, 035106. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.