IFP Energies nouvelles International Conference: RHEVE 2011: International Conference on Hybrid and Electric Vehicles
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 1, January-February 2013
IFP Energies nouvelles International Conference: RHEVE 2011: International Conference on Hybrid and Electric Vehicles
Page(s) 127 - 135
DOI https://doi.org/10.2516/ogst/2012072
Published online 26 February 2013
  • Hu Y., Yurkovich S., Guezennec Y., Yurkovich B. (2011) Electro-thermal battery model identification for automotive applications. J. Power Sources 196, 449-457. [CrossRef] [Google Scholar]
  • Chaturvedi N., Klein R., Christensen J., Ahmed J., Kojic A. (2010) Algorithms for advanced battery-management systems, IEEE Control Syst. Mag. 30, 49-68. [CrossRef] [MathSciNet] [Google Scholar]
  • Wang J., Guo J., Ding L. (2009) An adaptive Kalman filtering based state of charge combined estimator for electric vehicle battery pack, Energy Conver. Manage. 50, 3182-3186. [CrossRef] [Google Scholar]
  • Piller S., Perrin M., Jossen A. (2001) Methods for state-of-charge determination and their applications, J. Power Sources 96, 113-120. [CrossRef] [Google Scholar]
  • Lin C., Chen Q., Wang J. (2001) Improved Ah counting method for state of charge estimation of electric vehicle batteries, J. Tsinghua University Sci. Technol. 46, 247-251. [Google Scholar]
  • Terry H., Wang C. (2005) Support vector based battery state of charge estimator, J. Power Sources 141, 351-358. [CrossRef] [Google Scholar]
  • Barbarisi O., Vasca F., Glielmo L. (2006) State of charge Kalman filter estimator for automotive batteries, Control Eng. Pract. 14, 267-275. [CrossRef] [Google Scholar]
  • Di Domenico D., Fiengo G., Stefanopoulou A. (2008) Lithium-ion battery state of charge estimation with a Kalman filter based on a electrochemical model, Proc. of 2008 IEEE International Conference on Control Applications, 3-5 Sept., 1, 702-707. [Google Scholar]
  • Di Domenico D., Prada E., Creff Y. (2011) An adaptive strategy for Li-ion battery SOC estimation, Proceedings of 2011 IFAC World Congress, Milan, Italy, 28 Aug.-2 Sept., Vol. 3, Part. 1. [Google Scholar]
  • Kleinand R., Chaturvedi N., Christensen J., Ahmed J., Findeisen R., Kojic A. (2010) State estimation of a reduced electrochemical model of a lithium-ion battery, Proceedings of 2010 American Control Conference (ACC 2010), Baltimore, Maryland, 30 June-2 July, pp. 6618-6623. [Google Scholar]
  • Pang S., Farrell J., Du J., Barth M. (2001) Battery state-of-charge estimation, Proceedings of the American Control Conference (ACC 2001), Arlington, Virginia, 25–27 June, Vol. 2, 1644-1649. [Google Scholar]
  • Plett G. (2004) Extended kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 1. Background, J. Power Sources 134, 252-261. [CrossRef] [Google Scholar]
  • Plett G. (2004) Extended kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 2. Modeling and identification, J. Power Sources 134, 262-276. [CrossRef] [Google Scholar]
  • Plett G. (2004) Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 3. State and parameter estimation, J. Power Sources 134, 277-292. [CrossRef] [Google Scholar]
  • Pop V., Bergveld H.J., Op het Veld J.H.G., Regtien P.P.L., Danilov D., Notten P.H.L. (2006) Modeling battery behavior for accurate state-of-charge indication. J. Electrochem. Soc. 153, A2013-A2022. [CrossRef] [Google Scholar]
  • Santhanagopalan S., White R. (2006) Online estimation of the state of charge of a lithium ion cell, J. Power Sources 161, 1346-1355. [CrossRef] [Google Scholar]
  • Santhanagopalan S., White R. (2010) State of charge estimation using an unscented filter for high power lithium ion cells, Int. J. Energy Res. 34, 152-163. [CrossRef] [Google Scholar]
  • Smith K., Rahn C., Wang C. (2008) Model-based electrochemical estimation of lithium-ion batteries, Proceedings of 2008 IEEE International Conference on Control Applications (CCA 2008), San Antonio, Texas, 3-5 Sept., pp. 714-719. [Google Scholar]
  • Verbrugge M., Tate E. (2004) Adaptive state of charge algorithm for nickel metal hydride batteries including hysteresis phenomena, J. Power Sources 126, 236-249. [CrossRef] [Google Scholar]
  • Kong Soon Ng, Chin-Sien Moo, Yi-Ping Chen, Yao-Ching Hsieh (2009) Enhanced Coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries, Appl. Energy 86, 1506-1511. [Google Scholar]
  • Mauracher P., Karden E. (1997) Dynamic modelling of lead/acid batteries using impedance spectroscopy for parameter identification, J. Power Sources 67, 69-84. [CrossRef] [Google Scholar]
  • Diard J.P., Le Gorrec B., Montella C. (1996) Cinétique électrochimique, Hermann, Paris. [Google Scholar]
  • Cole K.S., Cole R.H. (1941) Dispersion and absorption in dielectrics I. alternating current characteristics, J. Chem. Phys. 9, 4, 341-351. [CrossRef] [Google Scholar]
  • Andre D., Meilera M., Steinera K., Walza H., Soczka-Gutha T., Sauer D. (2011) Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II. Modelling, J. Power Sources 196, 5349-5356. [CrossRef] [Google Scholar]
  • Montaru M., Pelissier S. (2010) Frequency and temporal identification of a li-ion polymer battery model using fractional impedance, Oil Gas Sci. Technol. – Rev. IFP 65, 67-78. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kuhn E., Forgez C., Lagonotte P., Friedrich G. (2006) Modelling NiMH battery using Cauer and Foster structures. J. Power Sources 158, 1490-1497. [CrossRef] [Google Scholar]
  • Gould C.R., Bingham C.M., Stone D.A., Bentley P. (2009) New battery model and state-of-health determination through subspace parameter estimation and state-observer techniques, IEEE Trans. Vehic. Technol. 58, 3905-3916. [CrossRef] [Google Scholar]
  • Stuart T., Fang F., Wang X., Ashtiani C., Pesaran A. (2002) A modular battery management system for HEVs, Proceedings of the SAE Future Car Congress, SAE Technical Paper 2002-01-1918. [Google Scholar]
  • Verbrugge M.W., Conell R.S. (2002) Electrochemical and thermal characterization of battery modules commensurate with electric vehicle integration, J. Electrochem. Soc. 149, 1, A45-A53. [CrossRef] [Google Scholar]
  • Verbrugge M.W., Conell R.S. (2007) Electrochemical characterization of high-power lithium ion batteries using triangular voltage and current excitation sources, J. Power Sources 174, 2-8. [CrossRef] [Google Scholar]
  • Hu T., Zanchi B., Zhao J. (2011) Simple analytical method for determining parameters of discharging batteries, IEEE Trans. Energy Conver. 26(3), 787-798. [CrossRef] [Google Scholar]
  • Plett G. (2006) Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1: Introduction and state estimation, J. Power Sources 161, 1356-1368. [CrossRef] [Google Scholar]
  • Plett G. (2005) Results of temperature-dependent LiPB cell modeling for HEV SOC estimation, Proceedings of the 21st Electric Vehicle Symposium, Monaco, 2-6 April. [Google Scholar]
  • Newman J., Tiedemann W. (1975) Porous-electrode theory with battery applications, AIChE J. 21, 25-41. [Google Scholar]
  • Wang C., Gu W., Liaw B. (1998) Micro-macroscopic coupled modeling of batteries and fuel cells. Part I. Model development, J. Electrochem. Soc. 145, 3407-3417. [CrossRef] [Google Scholar]
  • Wang C., Gu W., Liaw B. (1998) Micro-macroscopic coupled modeling of batteries and fuel cells. Part II. Application to nickel-cadmium and nickel-metal hydride cells, J. Electrochem. Soc. 145, 3418-3427. [CrossRef] [Google Scholar]
  • Gu W., Wang C. (2000) Thermal and electrochemical coupled modeling of a lithium-ion cell, Proc. ECS 99-25, 748-762. [Google Scholar]
  • Smith K., Wang C. (2006) Solid-state diffusion limitations on pulse operation of a lithium-ion cell for hybrid electric vehicles, J. Power Sources 161, 628-639. [CrossRef] [Google Scholar]
  • Ramadass P., Haran B., Gomadam P., White R., Popov B. (2004) Development of first principles capacity fade model for li-ion cells, J. Electrochem. Soc. 151, A196-A203. [Google Scholar]
  • Weidner J.W., Timmerman P. (1994) Effect of proton diffusion, electron conductivity, and charge-transfer resistance on nickel hydroxide discharge curves, J. Electrochem. Soc. 141, 346-351. [CrossRef] [Google Scholar]
  • Haran B., Popov B., White R. (1998) Determination of the hydrogen diffusion coefficient in metal hydrides by impedance spectroscopy. J. Power Sources 75, 56-63. [CrossRef] [Google Scholar]
  • Di Domenico D., Stefanopoulou A., Fiengo G. (2010) Lithium-ion battery state of charge and critical surface charge estimation using an electrochemical model-based extended kalman filter, J. Dyn. Syst. Meas. Control 132, 6, 61302-61313. [CrossRef] [Google Scholar]
  • Santhanagopalan S., Guo Q., Ramadass P., White R. (2006) Review of models for predicting the cycling performance of lithium-ion batteries, J. Power Sources 156, 620-628. [CrossRef] [Google Scholar]
  • Jacobsen T., West K. (1995) Diffusion impedance in planar, cylindrical and spherical symmetry, Electrochimica Acta 40, 2, 255-262, ISSN 0013-4686. [CrossRef] [Google Scholar]
  • Bernard J., Sciarretta A., Touzani Y., Sauvant-Moynot V. (2010) Advances in electrochemical models for predicting the cycling performance of traction batteries: Experimental study on NiMH and simulation, Oil Gas Sci. Technol. – Rev. IFP 65, 55-66. [CrossRef] [EDP Sciences] [Google Scholar]
  • Wu B., Mohammed M., Brigham D., Elder R., White R. (2001) A non-isothermal model of a nickel-metal hydride cell, J. Power Sources 101, 149-157. [CrossRef] [Google Scholar]
  • Siegel J.B., Lin X., Stefanopoulou A., Hussey D.S., Jacobson D.L., Gorsich D. (2011) Neutron imaging of lithium concentration in LFP pouch cell battery, J. Electrochem. Soc. 158, A523-A529. [CrossRef] [Google Scholar]
  • Oustaloup A., Cois O., Le Lay L. (2005) Représentation et identification par modèle non entier, Lavoisier, Paris. [Google Scholar]
  • Sabatier J., Aoun M., Oustaloup A., Grègoire G., Ragot F., Roy P. (2006) Fractional system identification for lead acid battery state of charge estimation, Signal Process 86, 2645-2657. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.