Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 67, Number 5, September-October 2012
Page(s) 753 - 775
DOI https://doi.org/10.2516/ogst/2012051
Published online 04 December 2012
  • Al Kharusi A.S., Blunt M.J. (2007) Network extraction from sandstone and carbonate pore space images, J. Petrol. Sci. Eng. 45, 41-46.
  • Anselmetti F.S., Luthi S., Eberli G.P. (1998) Quantitative characterization of carbonate pore systems by digital image analysis, AAPG Bull. 82, 1815-1836.
  • Arns C.H., Knackstedt M.A., Val Pinczewski W., Martys N.S. (2004) Virtual permeametry on microtomographic images, J. Petrol. Sci. Eng. 45, 41-46. [CrossRef]
  • Auzerais F.M., Dunsmuir J., Ferreol B.B., Martys N., Olson J., Ramakrishnan T.S., Rothman D.H., Schwartz L.M. (1996) Transport in sandstone : A study based on three dimensional microtomography, Geophys. Res. Lett. 23, 705-708. [CrossRef] [PubMed]
  • Baechle G.T., Colpaert A., Eberli G.P., Weger R.J. (2008) Effects of microporosity on sonic velocity in carbonate rocks, Lead. Edge 27, 8, 1012-1018. [CrossRef]
  • Baud P., Schubnel A., Wong T.-F. (2000) Dilatancy, compaction and failure mode in Solnhofen limestone, J. Geophys. Res. 195 19289-19303. [CrossRef] [PubMed]
  • Bauer D., Youssef S., Han M., Bekri S., Rosenberg E., Fleury M., Vizika O. (2011) From microcomputed tomography images to resistivity index calculations of heterogeneous carbonates using a dualporosity pore-network approach : Influence of percolation on the electrical transport properties, Phys. Rev. E 84, 011133. [CrossRef]
  • Brace W.F., Silver E., Hadley K., Goetze C. (1972) Cracks and pores – a closer look, Science 178, 163-165. [CrossRef]
  • Choquette P.W., Pray L.C. (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates, AAPG Bull. 54 207-250.
  • Churcher P.L., French P.R., Shaw J.C., Schramm L.L. (1991) Rock properties of Berea sandstone, Baker dolomite and Indiana limestone, SPE International Symposium on Oilfield Chemistry Anaheim, CA, 20-22 February, SPE 21044.
  • Coker D.A., Torquato S., Dunsmuir J.H. (1996) Morphology and physical properties of Fontainebleau sandstone via tomographic analysis, J. Geophys. Res. 101, 17497-17506. [CrossRef] [PubMed]
  • Dresen G., Gueguen Y. (2004) Damage and rock physical properties, in Mechanics of Fluid-Saturated Rocks, Gueguen Y., Bouteca M. (eds), Elsevier, Amsterdam, pp. 169-217.
  • Folk R.L. (1980) Petrology of Sedimentary Rocks, Hemphill, Austin, 184 p.
  • Fredrich J.T. (1999) 3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes, Phys. Chem. Earth A 24, 551-561. [CrossRef]
  • Fredrich J.T., Evans B., Wong T.-F. (1989) Micromechanics of the brittle to plastic transition in Carrara marble, J. Geophys. Res. 94, 4129-4145. [CrossRef] [PubMed]
  • Fredrich J.T., Menendez B., Wong T.-F. (1995) Imaging the pore structure of geomaterials, Science 268, 276-279. [CrossRef] [PubMed]
  • Fredrich J.T., Di Giovanni A.A., Noble D.R. (2006) Predicting macroscopic transport properties using microscale image data, J. Geophys. Res. 111, B03201. [CrossRef] [PubMed]
  • Gleeson J.W., Woessner D.E. (1991) Three-dimensional and flowweighted NMR imaging of pore connectivity in a limestone, Magn. Reson. Imag. 9, 5IFP Energies nouvelles International Conference: Pore2Field – Flows and Mechanics, 879-884. [CrossRef]
  • ILI (2007) Indiana Limestone Handbook, Indiana Limestone Institute of America, Inc., Bedford, IN, 22nd edition, 154 p.
  • Ketcham R.A., Carlson W.D. (2001) Acquisition, optimization and interpretation of X-ray computed tomographic imagery : Applications to the geosciences, Comput. Geosci. 27, 381-400. [CrossRef] [PubMed]
  • Kleinberg R.L. (1999) Nuclear magnetic resonance, in Experimental Methods in the Physical Sciences, Wong P.-Z. (ed.), Academic Press, San Diego, Vol. 35, pp. 337-385.
  • Knackstedt M.A., Latham S., Madadi M., Sheppard A., Varslot T. (2009) Digital rock physics : 3D imaging of core material and correlations to acoustic and flow properties, Lead. Edge 28, 1, 28-33. [CrossRef]
  • Lindquist W.B., Venkatarangan A., Dunsmuir J., Wong T.-F. (2000) Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones, J. Geophys. Res. 105, 21509-21527. [CrossRef] [PubMed]
  • Lorensen W.E., Cline H.E. (1987) Marching cubes : A high resolution 3D surface construction algorithm, Comput. Graphics 21, 163-169. [CrossRef]
  • Lucia F.J. (1995) Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization, AAPG Bull. 79 1275-1300.
  • Myer L.R., Kemeny J., Cook N.G.W., Ewy R., Suarez R., Zheng Z. (1992) Extensile cracking in porous rock under differential compressive stress, Appl. Mech. Rev. 45, 263-280. [CrossRef]
  • Okabe H., Blunt M.J. (2004) Prediction of permeability for porous media reconstructed using multiple-point statistics, Phys. Rev. E. 70 066135. [CrossRef]
  • Otsu N. (1979) A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man. Cybern. 9, 62-66. [CrossRef] [PubMed]
  • Paterson M.S., Wong T.-F. (2005) Experimental Rock Deformation – The Brittle Field, Spinger-Verlag, New York, 2nd ed., 348 p.
  • Patton J.B., Carr D.D. (1982) The Salem Limestone in the Indiana Building-Stone District, Department of Natural Resources, Geological Survey Occasional Papers 38, Bloomington, IN, 31 p.
  • Pittman E.D. (1971) Microporosity in carbonate rocks, AAPG Bull. 55, 1873-1878.
  • Robinson R.H. (1959) The effect of pore and confining pressure on the failure process in sedimentary rocks, Colorado School of Mines Quart. 54, 177-199.
  • Russ J.C. (1990) Computer-Assisted Microscopy, The Measurement and Analysis of Images, Plenum, NY, 453 p.
  • Spanne P., Thovert J.F., Jacquin C.J., Lindquist W.B., Jones K.W., Adler P.M. (1994) Synchrotron computer microtomography of porous media : Topology and transports, Phys. Rev. Lett. 73, 2001-2004. [NASA ADS] [CrossRef] [MathSciNet] [PubMed]
  • Sun W.C., Andrade J.E., Rudnicki J.W., Eichhubl P. (2011) Connecting microstructural attributes and permeability from 3D tomographic images of in situ shear-enhanced compaction bands using multiscale computations, Geophys. Res. Lett. 38, L10302.
  • Underwood E.E. (1970) Quantitative Stereology, Addison Wesley, Reading, 274 p.
  • Vajdova V., Baud P., Wong T.-F. (2004) Compaction, dilatancy and failure in porous carbonate rocks, J. Geophys. Res. 109, B05204. [NASA ADS] [CrossRef] [MathSciNet] [PubMed]
  • Vajdova V., Zhu W., Chen T.-M.N., Wong T.-F. (2010) Micromechanics of brittle faulting and cataclastic flow in Tavel limestone, J. Struct. Geol. 32, 1158-1169. [CrossRef]
  • Vajdova, V., P. Baud, L. Wu, T.-F. Wong (2012), Micromechanics of inelastic compaction in two allochemical limestones, J. Struct. Geol. 43, 100-117. [CrossRef]
  • Wadell H. (1935) Volume, shape and roundness of quartz particles, J. Geol. 43, 250-280. [NASA ADS] [CrossRef] [MathSciNet] [PubMed]
  • Wawersik W.R., Fairhurst C. (1970) A study of brittle rock fracture in laboratory compression experiments, Int. J. Rock Mech. Min. Sci. 7, 561-575. [CrossRef]
  • White J.A., Borja R.I., Fredrich J.T. (2006) Calculating the effective permeability of sandstone with multiscale lattice Boltzmann/finite element simulations, Acta Geotech. 1, 195-209. [CrossRef]
  • Wong T.-F., David C., Menendez B. (2004) Mechanical compaction, in Mechanics of Fluid-Saturated Rocks, Gueguen Y., Bouteca M. (eds), Elsevier Academic Press, Amsterdam, pp. 55-114.
  • Zhan X., Schwartz L.M., Toksoz M.N., Smith W.C., Morgan F.D. (2010) Pore-scale modeling of electrical and fluid transport in Berea sandstone, Geophysics 75, F135-F142. [CrossRef]
  • Zheng Z. (1989) Compressive stress-induced microcracks in rocks and application to seismic anisotropy and borehole stability, PhD Thesis, UC Berkeley, 227 p.
  • Zhu W., Baud P., Wong T.-F. (2010) Micromechanics of cataclastic pore collapse in limestone, J. Geophys. Res. 115, B04405. [NASA ADS] [CrossRef] [MathSciNet] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.