Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 67, Number 5, September-October 2012
Page(s) 753 - 775
DOI https://doi.org/10.2516/ogst/2012051
Published online 04 December 2012
  • Al Kharusi A.S., Blunt M.J. (2007) Network extraction from sandstone and carbonate pore space images, J. Petrol. Sci. Eng. 45, 41-46. [Google Scholar]
  • Anselmetti F.S., Luthi S., Eberli G.P. (1998) Quantitative characterization of carbonate pore systems by digital image analysis, AAPG Bull. 82, 1815-1836. [Google Scholar]
  • Arns C.H., Knackstedt M.A., Val Pinczewski W., Martys N.S. (2004) Virtual permeametry on microtomographic images, J. Petrol. Sci. Eng. 45, 41-46. [CrossRef] [Google Scholar]
  • Auzerais F.M., Dunsmuir J., Ferreol B.B., Martys N., Olson J., Ramakrishnan T.S., Rothman D.H., Schwartz L.M. (1996) Transport in sandstone : A study based on three dimensional microtomography, Geophys. Res. Lett. 23, 705-708. [CrossRef] [PubMed] [Google Scholar]
  • Baechle G.T., Colpaert A., Eberli G.P., Weger R.J. (2008) Effects of microporosity on sonic velocity in carbonate rocks, Lead. Edge 27, 8, 1012-1018. [CrossRef] [Google Scholar]
  • Baud P., Schubnel A., Wong T.-F. (2000) Dilatancy, compaction and failure mode in Solnhofen limestone, J. Geophys. Res. 195 19289-19303. [CrossRef] [PubMed] [Google Scholar]
  • Bauer D., Youssef S., Han M., Bekri S., Rosenberg E., Fleury M., Vizika O. (2011) From microcomputed tomography images to resistivity index calculations of heterogeneous carbonates using a dualporosity pore-network approach : Influence of percolation on the electrical transport properties, Phys. Rev. E 84, 011133. [CrossRef] [Google Scholar]
  • Brace W.F., Silver E., Hadley K., Goetze C. (1972) Cracks and pores – a closer look, Science 178, 163-165. [CrossRef] [Google Scholar]
  • Choquette P.W., Pray L.C. (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates, AAPG Bull. 54 207-250. [Google Scholar]
  • Churcher P.L., French P.R., Shaw J.C., Schramm L.L. (1991) Rock properties of Berea sandstone, Baker dolomite and Indiana limestone, SPE International Symposium on Oilfield Chemistry Anaheim, CA, 20-22 February, SPE 21044. [Google Scholar]
  • Coker D.A., Torquato S., Dunsmuir J.H. (1996) Morphology and physical properties of Fontainebleau sandstone via tomographic analysis, J. Geophys. Res. 101, 17497-17506. [CrossRef] [PubMed] [Google Scholar]
  • Dresen G., Gueguen Y. (2004) Damage and rock physical properties, in Mechanics of Fluid-Saturated Rocks, Gueguen Y., Bouteca M. (eds), Elsevier, Amsterdam, pp. 169-217. [Google Scholar]
  • Folk R.L. (1980) Petrology of Sedimentary Rocks, Hemphill, Austin, 184 p. [Google Scholar]
  • Fredrich J.T. (1999) 3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes, Phys. Chem. Earth A 24, 551-561. [CrossRef] [Google Scholar]
  • Fredrich J.T., Evans B., Wong T.-F. (1989) Micromechanics of the brittle to plastic transition in Carrara marble, J. Geophys. Res. 94, 4129-4145. [CrossRef] [PubMed] [Google Scholar]
  • Fredrich J.T., Menendez B., Wong T.-F. (1995) Imaging the pore structure of geomaterials, Science 268, 276-279. [CrossRef] [PubMed] [Google Scholar]
  • Fredrich J.T., Di Giovanni A.A., Noble D.R. (2006) Predicting macroscopic transport properties using microscale image data, J. Geophys. Res. 111, B03201. [CrossRef] [PubMed] [Google Scholar]
  • Gleeson J.W., Woessner D.E. (1991) Three-dimensional and flowweighted NMR imaging of pore connectivity in a limestone, Magn. Reson. Imag. 9, 5IFP Energies nouvelles International Conference: Pore2Field – Flows and Mechanics, 879-884. [CrossRef] [Google Scholar]
  • ILI (2007) Indiana Limestone Handbook, Indiana Limestone Institute of America, Inc., Bedford, IN, 22nd edition, 154 p. [Google Scholar]
  • Ketcham R.A., Carlson W.D. (2001) Acquisition, optimization and interpretation of X-ray computed tomographic imagery : Applications to the geosciences, Comput. Geosci. 27, 381-400. [CrossRef] [PubMed] [Google Scholar]
  • Kleinberg R.L. (1999) Nuclear magnetic resonance, in Experimental Methods in the Physical Sciences, Wong P.-Z. (ed.), Academic Press, San Diego, Vol. 35, pp. 337-385. [Google Scholar]
  • Knackstedt M.A., Latham S., Madadi M., Sheppard A., Varslot T. (2009) Digital rock physics : 3D imaging of core material and correlations to acoustic and flow properties, Lead. Edge 28, 1, 28-33. [CrossRef] [Google Scholar]
  • Lindquist W.B., Venkatarangan A., Dunsmuir J., Wong T.-F. (2000) Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones, J. Geophys. Res. 105, 21509-21527. [CrossRef] [PubMed] [Google Scholar]
  • Lorensen W.E., Cline H.E. (1987) Marching cubes : A high resolution 3D surface construction algorithm, Comput. Graphics 21, 163-169. [CrossRef] [Google Scholar]
  • Lucia F.J. (1995) Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization, AAPG Bull. 79 1275-1300. [Google Scholar]
  • Myer L.R., Kemeny J., Cook N.G.W., Ewy R., Suarez R., Zheng Z. (1992) Extensile cracking in porous rock under differential compressive stress, Appl. Mech. Rev. 45, 263-280. [CrossRef] [Google Scholar]
  • Okabe H., Blunt M.J. (2004) Prediction of permeability for porous media reconstructed using multiple-point statistics, Phys. Rev. E. 70 066135. [CrossRef] [Google Scholar]
  • Otsu N. (1979) A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man. Cybern. 9, 62-66. [CrossRef] [PubMed] [Google Scholar]
  • Paterson M.S., Wong T.-F. (2005) Experimental Rock Deformation – The Brittle Field, Spinger-Verlag, New York, 2nd ed., 348 p. [Google Scholar]
  • Patton J.B., Carr D.D. (1982) The Salem Limestone in the Indiana Building-Stone District, Department of Natural Resources, Geological Survey Occasional Papers 38, Bloomington, IN, 31 p. [Google Scholar]
  • Pittman E.D. (1971) Microporosity in carbonate rocks, AAPG Bull. 55, 1873-1878. [Google Scholar]
  • Robinson R.H. (1959) The effect of pore and confining pressure on the failure process in sedimentary rocks, Colorado School of Mines Quart. 54, 177-199. [Google Scholar]
  • Russ J.C. (1990) Computer-Assisted Microscopy, The Measurement and Analysis of Images, Plenum, NY, 453 p. [Google Scholar]
  • Spanne P., Thovert J.F., Jacquin C.J., Lindquist W.B., Jones K.W., Adler P.M. (1994) Synchrotron computer microtomography of porous media : Topology and transports, Phys. Rev. Lett. 73, 2001-2004. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Sun W.C., Andrade J.E., Rudnicki J.W., Eichhubl P. (2011) Connecting microstructural attributes and permeability from 3D tomographic images of in situ shear-enhanced compaction bands using multiscale computations, Geophys. Res. Lett. 38, L10302. [Google Scholar]
  • Underwood E.E. (1970) Quantitative Stereology, Addison Wesley, Reading, 274 p. [Google Scholar]
  • Vajdova V., Baud P., Wong T.-F. (2004) Compaction, dilatancy and failure in porous carbonate rocks, J. Geophys. Res. 109, B05204. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Vajdova V., Zhu W., Chen T.-M.N., Wong T.-F. (2010) Micromechanics of brittle faulting and cataclastic flow in Tavel limestone, J. Struct. Geol. 32, 1158-1169. [CrossRef] [Google Scholar]
  • Vajdova, V., P. Baud, L. Wu, T.-F. Wong (2012), Micromechanics of inelastic compaction in two allochemical limestones, J. Struct. Geol. 43, 100-117. [CrossRef] [Google Scholar]
  • Wadell H. (1935) Volume, shape and roundness of quartz particles, J. Geol. 43, 250-280. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Wawersik W.R., Fairhurst C. (1970) A study of brittle rock fracture in laboratory compression experiments, Int. J. Rock Mech. Min. Sci. 7, 561-575. [CrossRef] [Google Scholar]
  • White J.A., Borja R.I., Fredrich J.T. (2006) Calculating the effective permeability of sandstone with multiscale lattice Boltzmann/finite element simulations, Acta Geotech. 1, 195-209. [CrossRef] [Google Scholar]
  • Wong T.-F., David C., Menendez B. (2004) Mechanical compaction, in Mechanics of Fluid-Saturated Rocks, Gueguen Y., Bouteca M. (eds), Elsevier Academic Press, Amsterdam, pp. 55-114. [Google Scholar]
  • Zhan X., Schwartz L.M., Toksoz M.N., Smith W.C., Morgan F.D. (2010) Pore-scale modeling of electrical and fluid transport in Berea sandstone, Geophysics 75, F135-F142. [CrossRef] [Google Scholar]
  • Zheng Z. (1989) Compressive stress-induced microcracks in rocks and application to seismic anisotropy and borehole stability, PhD Thesis, UC Berkeley, 227 p. [Google Scholar]
  • Zhu W., Baud P., Wong T.-F. (2010) Micromechanics of cataclastic pore collapse in limestone, J. Geophys. Res. 115, B04405. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.