Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 67, Numéro 5, September-October 2012
Page(s) 753 - 775
Publié en ligne 4 décembre 2012
  • Al Kharusi A.S., Blunt M.J. (2007) Network extraction from sandstone and carbonate pore space images, J. Petrol. Sci. Eng. 45, 41-46. [Google Scholar]
  • Anselmetti F.S., Luthi S., Eberli G.P. (1998) Quantitative characterization of carbonate pore systems by digital image analysis, AAPG Bull. 82, 1815-1836. [Google Scholar]
  • Arns C.H., Knackstedt M.A., Val Pinczewski W., Martys N.S. (2004) Virtual permeametry on microtomographic images, J. Petrol. Sci. Eng. 45, 41-46. [Google Scholar]
  • Auzerais F.M., Dunsmuir J., Ferreol B.B., Martys N., Olson J., Ramakrishnan T.S., Rothman D.H., Schwartz L.M. (1996) Transport in sandstone : A study based on three dimensional microtomography, Geophys. Res. Lett. 23, 705-708. [Google Scholar]
  • Baechle G.T., Colpaert A., Eberli G.P., Weger R.J. (2008) Effects of microporosity on sonic velocity in carbonate rocks, Lead. Edge 27, 8, 1012-1018. [CrossRef] [Google Scholar]
  • Baud P., Schubnel A., Wong T.-F. (2000) Dilatancy, compaction and failure mode in Solnhofen limestone, J. Geophys. Res. 195 19289-19303. [Google Scholar]
  • Bauer D., Youssef S., Han M., Bekri S., Rosenberg E., Fleury M., Vizika O. (2011) From microcomputed tomography images to resistivity index calculations of heterogeneous carbonates using a dualporosity pore-network approach : Influence of percolation on the electrical transport properties, Phys. Rev. E 84, 011133. [CrossRef] [Google Scholar]
  • Brace W.F., Silver E., Hadley K., Goetze C. (1972) Cracks and pores – a closer look, Science 178, 163-165. [CrossRef] [Google Scholar]
  • Choquette P.W., Pray L.C. (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates, AAPG Bull. 54 207-250. [Google Scholar]
  • Churcher P.L., French P.R., Shaw J.C., Schramm L.L. (1991) Rock properties of Berea sandstone, Baker dolomite and Indiana limestone, SPE International Symposium on Oilfield Chemistry Anaheim, CA, 20-22 February, SPE 21044. [Google Scholar]
  • Coker D.A., Torquato S., Dunsmuir J.H. (1996) Morphology and physical properties of Fontainebleau sandstone via tomographic analysis, J. Geophys. Res. 101, 17497-17506. [Google Scholar]
  • Dresen G., Gueguen Y. (2004) Damage and rock physical properties, in Mechanics of Fluid-Saturated Rocks, Gueguen Y., Bouteca M. (eds), Elsevier, Amsterdam, pp. 169-217. [Google Scholar]
  • Folk R.L. (1980) Petrology of Sedimentary Rocks, Hemphill, Austin, 184 p. [Google Scholar]
  • Fredrich J.T. (1999) 3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes, Phys. Chem. Earth A 24, 551-561. [CrossRef] [Google Scholar]
  • Fredrich J.T., Evans B., Wong T.-F. (1989) Micromechanics of the brittle to plastic transition in Carrara marble, J. Geophys. Res. 94, 4129-4145. [Google Scholar]
  • Fredrich J.T., Menendez B., Wong T.-F. (1995) Imaging the pore structure of geomaterials, Science 268, 276-279. [CrossRef] [PubMed] [Google Scholar]
  • Fredrich J.T., Di Giovanni A.A., Noble D.R. (2006) Predicting macroscopic transport properties using microscale image data, J. Geophys. Res. 111, B03201. [Google Scholar]
  • Gleeson J.W., Woessner D.E. (1991) Three-dimensional and flowweighted NMR imaging of pore connectivity in a limestone, Magn. Reson. Imag. 9, 5IFP Energies nouvelles International Conference: Pore2Field – Flows and Mechanics, 879-884. [CrossRef] [Google Scholar]
  • ILI (2007) Indiana Limestone Handbook, Indiana Limestone Institute of America, Inc., Bedford, IN, 22nd edition, 154 p. [Google Scholar]
  • Ketcham R.A., Carlson W.D. (2001) Acquisition, optimization and interpretation of X-ray computed tomographic imagery : Applications to the geosciences, Comput. Geosci. 27, 381-400. [Google Scholar]
  • Kleinberg R.L. (1999) Nuclear magnetic resonance, in Experimental Methods in the Physical Sciences, Wong P.-Z. (ed.), Academic Press, San Diego, Vol. 35, pp. 337-385. [Google Scholar]
  • Knackstedt M.A., Latham S., Madadi M., Sheppard A., Varslot T. (2009) Digital rock physics : 3D imaging of core material and correlations to acoustic and flow properties, Lead. Edge 28, 1, 28-33. [CrossRef] [Google Scholar]
  • Lindquist W.B., Venkatarangan A., Dunsmuir J., Wong T.-F. (2000) Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones, J. Geophys. Res. 105, 21509-21527. [Google Scholar]
  • Lorensen W.E., Cline H.E. (1987) Marching cubes : A high resolution 3D surface construction algorithm, Comput. Graphics 21, 163-169. [Google Scholar]
  • Lucia F.J. (1995) Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization, AAPG Bull. 79 1275-1300. [Google Scholar]
  • Myer L.R., Kemeny J., Cook N.G.W., Ewy R., Suarez R., Zheng Z. (1992) Extensile cracking in porous rock under differential compressive stress, Appl. Mech. Rev. 45, 263-280. [CrossRef] [Google Scholar]
  • Okabe H., Blunt M.J. (2004) Prediction of permeability for porous media reconstructed using multiple-point statistics, Phys. Rev. E. 70 066135. [CrossRef] [Google Scholar]
  • Otsu N. (1979) A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man. Cybern. 9, 62-66. [Google Scholar]
  • Paterson M.S., Wong T.-F. (2005) Experimental Rock Deformation – The Brittle Field, Spinger-Verlag, New York, 2nd ed., 348 p. [Google Scholar]
  • Patton J.B., Carr D.D. (1982) The Salem Limestone in the Indiana Building-Stone District, Department of Natural Resources, Geological Survey Occasional Papers 38, Bloomington, IN, 31 p. [Google Scholar]
  • Pittman E.D. (1971) Microporosity in carbonate rocks, AAPG Bull. 55, 1873-1878. [Google Scholar]
  • Robinson R.H. (1959) The effect of pore and confining pressure on the failure process in sedimentary rocks, Colorado School of Mines Quart. 54, 177-199. [Google Scholar]
  • Russ J.C. (1990) Computer-Assisted Microscopy, The Measurement and Analysis of Images, Plenum, NY, 453 p. [Google Scholar]
  • Spanne P., Thovert J.F., Jacquin C.J., Lindquist W.B., Jones K.W., Adler P.M. (1994) Synchrotron computer microtomography of porous media : Topology and transports, Phys. Rev. Lett. 73, 2001-2004. [Google Scholar]
  • Sun W.C., Andrade J.E., Rudnicki J.W., Eichhubl P. (2011) Connecting microstructural attributes and permeability from 3D tomographic images of in situ shear-enhanced compaction bands using multiscale computations, Geophys. Res. Lett. 38, L10302. [Google Scholar]
  • Underwood E.E. (1970) Quantitative Stereology, Addison Wesley, Reading, 274 p. [Google Scholar]
  • Vajdova V., Baud P., Wong T.-F. (2004) Compaction, dilatancy and failure in porous carbonate rocks, J. Geophys. Res. 109, B05204. [Google Scholar]
  • Vajdova V., Zhu W., Chen T.-M.N., Wong T.-F. (2010) Micromechanics of brittle faulting and cataclastic flow in Tavel limestone, J. Struct. Geol. 32, 1158-1169. [Google Scholar]
  • Vajdova, V., P. Baud, L. Wu, T.-F. Wong (2012), Micromechanics of inelastic compaction in two allochemical limestones, J. Struct. Geol. 43, 100-117. [CrossRef] [Google Scholar]
  • Wadell H. (1935) Volume, shape and roundness of quartz particles, J. Geol. 43, 250-280. [Google Scholar]
  • Wawersik W.R., Fairhurst C. (1970) A study of brittle rock fracture in laboratory compression experiments, Int. J. Rock Mech. Min. Sci. 7, 561-575. [Google Scholar]
  • White J.A., Borja R.I., Fredrich J.T. (2006) Calculating the effective permeability of sandstone with multiscale lattice Boltzmann/finite element simulations, Acta Geotech. 1, 195-209. [CrossRef] [Google Scholar]
  • Wong T.-F., David C., Menendez B. (2004) Mechanical compaction, in Mechanics of Fluid-Saturated Rocks, Gueguen Y., Bouteca M. (eds), Elsevier Academic Press, Amsterdam, pp. 55-114. [Google Scholar]
  • Zhan X., Schwartz L.M., Toksoz M.N., Smith W.C., Morgan F.D. (2010) Pore-scale modeling of electrical and fluid transport in Berea sandstone, Geophysics 75, F135-F142. [CrossRef] [Google Scholar]
  • Zheng Z. (1989) Compressive stress-induced microcracks in rocks and application to seismic anisotropy and borehole stability, PhD Thesis, UC Berkeley, 227 p. [Google Scholar]
  • Zhu W., Baud P., Wong T.-F. (2010) Micromechanics of cataclastic pore collapse in limestone, J. Geophys. Res. 115, B04405. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.