Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 67, Number 4, July-August 2012
Page(s) 671 - 692
Published online 20 September 2012
  • Bamberger Y. (1997) Mécanique de l’ingénieur, solides déformables, Éd. Hermann. [Google Scholar]
  • Brac J. (2003) Propagation d’ondes acoustiques et élastiques, Lavoisier. [Google Scholar]
  • Brac J., Lanfrey P.Y., Sagaut P. (2005) Vorticity field and acoustic sources in a turbulent flow at very low Mach and high Reynolds numbers, ASME-PV&PVC-PVP2005-71562, July, Denver. [Google Scholar]
  • Brac J., Odru P., Gerez J.M. (2002) Flow and thermal modeling in cryogenic flexible pipes, ISOPE-paper No.2002-JSC-175, KitaKyuchu. [Google Scholar]
  • Bailly C., Comte-Bellot G. (2003) Turbulence, CNRS Éditions. [Google Scholar]
  • Bailly C. (1997) Modeling of turbulent mixing noise, Lecture series-07 of Von Karman Institute, 15-18 Sept. [Google Scholar]
  • Bilanin A.J., Covert E.E. (1973) Estimation of possible excitation frequencies for shallow rectangular cavities, AIAA J. 11, 347-351. [CrossRef] [Google Scholar]
  • Blake W.K. (1986) Mechanics of flow-induced sound and vibration, Academic Press, Vol. 1. [Google Scholar]
  • Boersma B.J. (2001) Direct numerical simulation of jet noise using different acoustic equations, Delft University of Technology, Netherlands, 14 Feb. [Google Scholar]
  • Chong M.S., Perry A.E., Cantwell B.J. (1990) A general classification of three-dimensional flow field, Phys. Fluids A 2, 765. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Courant R., Hilbert D. (1953) Methods of Mathematical Physics, Vol. 1, pp. 31, Interscience. [Google Scholar]
  • Drazin P.G., Howard L.N. (1966) Hydrodynamic stability of parallel flow of inviscid fluid, Elsevier, Advanced in Applied Mechanics, Vol. 9. [Google Scholar]
  • Drazin P.G., Reid W.H. (2004) Hydrodynamic stability, Cambridge University Press, 2nd Ed. Cambridge, England, pp. 69-123. [Google Scholar]
  • Ffowcs Williams J.E., Hawkings D.L. (1969) Sound generated by turbulence and surfaces in arbitrary motion, Philos. T. Roy. Soc. 264, 1151, 321-345. [Google Scholar]
  • Gharib M., Roshko A. (1987) The effect of flow oscillations on cavity drag, J. Fluid Mech. 177, 501. [Google Scholar]
  • Germain P. (1986) Mécanique, Éd. Ellipse. [Google Scholar]
  • Gloerfelt X. (2001) Bruit rayonné par un écoulement affleurant une cavité, Thèse, École Centrale de Lyon, N° Ordre : 2001-26. [Google Scholar]
  • Goldstein M.E. (1976) Aeroacoustics, Mc Graw-Hill, New-York. [Google Scholar]
  • Howe M.S. (1975) Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute, J. Fluid Mech. 71, 4, 625-673. [NASA ADS] [CrossRef] [Google Scholar]
  • Hunt J., Wray A., Moin P. (1988) Eddies, stream, and convergence zones in turbulent flows, Center of Turbulence Research Report CTR-S88, pp. 193. [Google Scholar]
  • Jeong J., Hussain F. (1995) On the identification of a vortex, J. Fluid Mech. 285, 69-94. [NASA ADS] [CrossRef] [Google Scholar]
  • Karamcheti K. (1955) Acoustic radiation from two-dimensional rectangular cutouts in aerodynamic surfaces, NACA TN 3487. [Google Scholar]
  • Kline S.J., Reynolds W.C., Schraub F.A., Runstadler P.W. (1967) The structure of turbulent boundary layers, J. Fluid Mech. 30, 4, 741-773. [CrossRef] [Google Scholar]
  • Larcheveque L., Sagaut P., Mary I., Labbé O. (2002) Large-eddy simulation of a compressible flow past a deep cavity, Phys. Fluids 15, 1, 193-210. [Google Scholar]
  • Larcheveque L., Sagaut P., Le T., Comte P. (2004) Large-eddy simulation of a compressible flow in a three-dimensional open cavity at high Reynolds number, J. Fluid Mech. 516, 265-301. [CrossRef] [Google Scholar]
  • Leducq D., Perret R. (1988) Génération de vibrations par les couches limites, Société BERTIN et Cie, Société ALSTHOM, ACB et CERG, PUB 87.001. [Google Scholar]
  • Leonard A. (1980) Vortex methods for flow simulation, J. Comput. Phys. 37, 289-335. [CrossRef] [Google Scholar]
  • Lesieur M. (1994) La turbulence, Presses universitaire de Grenoble. [Google Scholar]
  • Lighthill M.J. (1945) A new method of two-dimensional aerodynamic design, Reports and Memoranda No. 2112, April. [Google Scholar]
  • Lighthill M.J. (1952) On sound generated aerodynamically I. General theory, Proc. R. Soc. Lond. Ser. A 211. [Google Scholar]
  • Lighthill M.J. (1954) On sound generated aerodynamically II. Turbulence as a source of sound, Proc. R. Soc. Lond. Ser. A 222. [Google Scholar]
  • Lin C.C. (1944) On the stability of two-dimensional parallel flows, PNAS 30, 316-324. [CrossRef] [Google Scholar]
  • Lin C.-C. (1955) The Theory of Hydrodynamic Stability, Cambridge Press, Cambridge, pp. 1-153. [Google Scholar]
  • Lugt H.J. (1979) The dilemma of defining a vortex, Recent Developments in Theoretical and Experimental Fluid Mechanics, Springer, pp. 309-321. [Google Scholar]
  • Michalke A. (1972) The instability of free shear layers, Elsevier, Progress in Aerospace Sciences, Vol. 12, pp. 213-216. [Google Scholar]
  • Michalke A. (1965) On spatially growing disturbances in an inviscid shear layer, J. Fluid Mech. 2, 3, 521-544. [CrossRef] [Google Scholar]
  • Michalke A. (1964) On the inviscid instability of the hyperbolictangent velocity profile, DVL - Institut fr Turbulenzforschung, Berlin. [Google Scholar]
  • Panaitescu V.N. (2000) Une solution exacte de l’équation d’Orr- Sommerfeld, Bul. Inst. Polit. Iasi, t. XLVI(L), Suppliment. [Google Scholar]
  • Peters M. (1993) Aeroacoustic sources in internal flows, Thesis, Eindhoven university of technology, ISBN 90-386-0282-0, Sept. [Google Scholar]
  • Plumblee H.E., Gibson J.S., Lassiter L.W. (1962) A theoretical and experimental investigation of the acoustic response of cavities in an aerodynamic flow, U.S. Air Force Rep. WADD-TR-61-75. [Google Scholar]
  • Powell A. (1964) Theory of vortex sound, J. Acoust. Soc. Am. 36, 1, 177-195. [Google Scholar]
  • Rayleigh J.W.S. (1945) Theory of sound, Tome II, 2nd ed., General Publishing Company, Vol. I and Vol. II. Dover publications. [Google Scholar]
  • Rayleigh L. (1880) On the stability or instability of certain fluid motions, Proc. Lond. Math. Soc. 11, 57-70. [Google Scholar]
  • Ricot D. (2002) Simulation numérique d’un écoulement affleurant une cavité par la méthode Boltzmann sur réseau et application au toit ouvrant de véhicules automobiles, Thèse, École Centrale de Lyon, N° Ordre : 2002-36. [Google Scholar]
  • Robinson S.K. (1991) The kinetics of turbulent boundary layer structure, PhD Dissertation, Stanford University. [Google Scholar]
  • Rockwell D. (1998) Vortex-Body Interaction, Annu. Rev. Fluid Mech. 30, 199-229. [Google Scholar]
  • Rossiter J.E. (1964) Wind tunnel experiments of the flow over rectangular cavities at subsonic and transonic speeds, Aero. Res. Counc. R. & M., No. 3438. [Google Scholar]
  • Sarohia V. (1976) Experimental investigation of oscillations in flows over shallow cavities, paper 76-182, AIAA 14th Aerospace Sciences Meeting, Washington. [Google Scholar]
  • H. Schlichting (1979) Boundary Layer Theory, Springer, 7th Ed., Berlin, pp. 83-111. [Google Scholar]
  • Tam W., Block P. (1978) On the tones and pressure oscillations induced by flow over rectangular cavities, J. Fluid Mech. 89, 2, 373-399. [CrossRef] [Google Scholar]
  • Tatsumi T., Gotoh K. (1959) The stability of free boundary layers between two uniform streams, J. Fluid Mech. 7, 433-441. [CrossRef] [Google Scholar]
  • Tollmien W. (1935) Translated as, general instability criterion of laminar velocity disturbances, NACA TM-792, 1936. [Google Scholar]
  • Truesdell C. (1953) The Kinematics of Vorticity, Indiana University. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.