Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 67, Numéro 4, July-August 2012
Page(s) 671 - 692
DOI https://doi.org/10.2516/ogst/2012005
Publié en ligne 20 septembre 2012
  • Bamberger Y. (1997) Mécanique de l’ingénieur, solides déformables, Éd. Hermann. [Google Scholar]
  • Brac J. (2003) Propagation d’ondes acoustiques et élastiques, Lavoisier. [Google Scholar]
  • Brac J., Lanfrey P.Y., Sagaut P. (2005) Vorticity field and acoustic sources in a turbulent flow at very low Mach and high Reynolds numbers, ASME-PV&PVC-PVP2005-71562, July, Denver. [Google Scholar]
  • Brac J., Odru P., Gerez J.M. (2002) Flow and thermal modeling in cryogenic flexible pipes, ISOPE-paper No.2002-JSC-175, KitaKyuchu. [Google Scholar]
  • Bailly C., Comte-Bellot G. (2003) Turbulence, CNRS Éditions. [Google Scholar]
  • Bailly C. (1997) Modeling of turbulent mixing noise, Lecture series-07 of Von Karman Institute, 15-18 Sept. [Google Scholar]
  • Bilanin A.J., Covert E.E. (1973) Estimation of possible excitation frequencies for shallow rectangular cavities, AIAA J. 11, 347-351. [CrossRef] [Google Scholar]
  • Blake W.K. (1986) Mechanics of flow-induced sound and vibration, Academic Press, Vol. 1. [Google Scholar]
  • Boersma B.J. (2001) Direct numerical simulation of jet noise using different acoustic equations, Delft University of Technology, Netherlands, 14 Feb. [Google Scholar]
  • Chong M.S., Perry A.E., Cantwell B.J. (1990) A general classification of three-dimensional flow field, Phys. Fluids A 2, 765. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Courant R., Hilbert D. (1953) Methods of Mathematical Physics, Vol. 1, pp. 31, Interscience. [Google Scholar]
  • Drazin P.G., Howard L.N. (1966) Hydrodynamic stability of parallel flow of inviscid fluid, Elsevier, Advanced in Applied Mechanics, Vol. 9. [Google Scholar]
  • Drazin P.G., Reid W.H. (2004) Hydrodynamic stability, Cambridge University Press, 2nd Ed. Cambridge, England, pp. 69-123. [Google Scholar]
  • Ffowcs Williams J.E., Hawkings D.L. (1969) Sound generated by turbulence and surfaces in arbitrary motion, Philos. T. Roy. Soc. 264, 1151, 321-345. [CrossRef] [Google Scholar]
  • Gharib M., Roshko A. (1987) The effect of flow oscillations on cavity drag, J. Fluid Mech. 177, 501. [Google Scholar]
  • Germain P. (1986) Mécanique, Éd. Ellipse. [Google Scholar]
  • Gloerfelt X. (2001) Bruit rayonné par un écoulement affleurant une cavité, Thèse, École Centrale de Lyon, N° Ordre : 2001-26. [Google Scholar]
  • Goldstein M.E. (1976) Aeroacoustics, Mc Graw-Hill, New-York. [Google Scholar]
  • Howe M.S. (1975) Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute, J. Fluid Mech. 71, 4, 625-673. [NASA ADS] [CrossRef] [Google Scholar]
  • Hunt J., Wray A., Moin P. (1988) Eddies, stream, and convergence zones in turbulent flows, Center of Turbulence Research Report CTR-S88, pp. 193. [Google Scholar]
  • Jeong J., Hussain F. (1995) On the identification of a vortex, J. Fluid Mech. 285, 69-94. [NASA ADS] [CrossRef] [Google Scholar]
  • Karamcheti K. (1955) Acoustic radiation from two-dimensional rectangular cutouts in aerodynamic surfaces, NACA TN 3487. [Google Scholar]
  • Kline S.J., Reynolds W.C., Schraub F.A., Runstadler P.W. (1967) The structure of turbulent boundary layers, J. Fluid Mech. 30, 4, 741-773. [CrossRef] [Google Scholar]
  • Larcheveque L., Sagaut P., Mary I., Labbé O. (2002) Large-eddy simulation of a compressible flow past a deep cavity, Phys. Fluids 15, 1, 193-210. [CrossRef] [Google Scholar]
  • Larcheveque L., Sagaut P., Le T., Comte P. (2004) Large-eddy simulation of a compressible flow in a three-dimensional open cavity at high Reynolds number, J. Fluid Mech. 516, 265-301. [CrossRef] [Google Scholar]
  • Leducq D., Perret R. (1988) Génération de vibrations par les couches limites, Société BERTIN et Cie, Société ALSTHOM, ACB et CERG, PUB 87.001. [Google Scholar]
  • Leonard A. (1980) Vortex methods for flow simulation, J. Comput. Phys. 37, 289-335. [CrossRef] [Google Scholar]
  • Lesieur M. (1994) La turbulence, Presses universitaire de Grenoble. [Google Scholar]
  • Lighthill M.J. (1945) A new method of two-dimensional aerodynamic design, Reports and Memoranda No. 2112, April. [Google Scholar]
  • Lighthill M.J. (1952) On sound generated aerodynamically I. General theory, Proc. R. Soc. Lond. Ser. A 211. [Google Scholar]
  • Lighthill M.J. (1954) On sound generated aerodynamically II. Turbulence as a source of sound, Proc. R. Soc. Lond. Ser. A 222. [Google Scholar]
  • Lin C.C. (1944) On the stability of two-dimensional parallel flows, PNAS 30, 316-324. [CrossRef] [Google Scholar]
  • Lin C.-C. (1955) The Theory of Hydrodynamic Stability, Cambridge Press, Cambridge, pp. 1-153. [Google Scholar]
  • Lugt H.J. (1979) The dilemma of defining a vortex, Recent Developments in Theoretical and Experimental Fluid Mechanics, Springer, pp. 309-321. [Google Scholar]
  • Michalke A. (1972) The instability of free shear layers, Elsevier, Progress in Aerospace Sciences, Vol. 12, pp. 213-216. [Google Scholar]
  • Michalke A. (1965) On spatially growing disturbances in an inviscid shear layer, J. Fluid Mech. 2, 3, 521-544. [CrossRef] [Google Scholar]
  • Michalke A. (1964) On the inviscid instability of the hyperbolictangent velocity profile, DVL - Institut fr Turbulenzforschung, Berlin. [Google Scholar]
  • Panaitescu V.N. (2000) Une solution exacte de l’équation d’Orr- Sommerfeld, Bul. Inst. Polit. Iasi, t. XLVI(L), Suppliment. [Google Scholar]
  • Peters M. (1993) Aeroacoustic sources in internal flows, Thesis, Eindhoven university of technology, ISBN 90-386-0282-0, Sept. [Google Scholar]
  • Plumblee H.E., Gibson J.S., Lassiter L.W. (1962) A theoretical and experimental investigation of the acoustic response of cavities in an aerodynamic flow, U.S. Air Force Rep. WADD-TR-61-75. [Google Scholar]
  • Powell A. (1964) Theory of vortex sound, J. Acoust. Soc. Am. 36, 1, 177-195. [NASA ADS] [CrossRef] [Google Scholar]
  • Rayleigh J.W.S. (1945) Theory of sound, Tome II, 2nd ed., General Publishing Company, Vol. I and Vol. II. Dover publications. [Google Scholar]
  • Rayleigh L. (1880) On the stability or instability of certain fluid motions, Proc. Lond. Math. Soc. 11, 57-70. [Google Scholar]
  • Ricot D. (2002) Simulation numérique d’un écoulement affleurant une cavité par la méthode Boltzmann sur réseau et application au toit ouvrant de véhicules automobiles, Thèse, École Centrale de Lyon, N° Ordre : 2002-36. [Google Scholar]
  • Robinson S.K. (1991) The kinetics of turbulent boundary layer structure, PhD Dissertation, Stanford University. [Google Scholar]
  • Rockwell D. (1998) Vortex-Body Interaction, Annu. Rev. Fluid Mech. 30, 199-229. [CrossRef] [Google Scholar]
  • Rossiter J.E. (1964) Wind tunnel experiments of the flow over rectangular cavities at subsonic and transonic speeds, Aero. Res. Counc. R. & M., No. 3438. [Google Scholar]
  • Sarohia V. (1976) Experimental investigation of oscillations in flows over shallow cavities, paper 76-182, AIAA 14th Aerospace Sciences Meeting, Washington. [Google Scholar]
  • H. Schlichting (1979) Boundary Layer Theory, Springer, 7th Ed., Berlin, pp. 83-111. [Google Scholar]
  • Tam W., Block P. (1978) On the tones and pressure oscillations induced by flow over rectangular cavities, J. Fluid Mech. 89, 2, 373-399. [CrossRef] [Google Scholar]
  • Tatsumi T., Gotoh K. (1959) The stability of free boundary layers between two uniform streams, J. Fluid Mech. 7, 433-441. [CrossRef] [Google Scholar]
  • Tollmien W. (1935) Translated as, general instability criterion of laminar velocity disturbances, NACA TM-792, 1936. [Google Scholar]
  • Truesdell C. (1953) The Kinematics of Vorticity, Indiana University. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.