Dossier: Monitoring of CO2 Sequestration and Hydrocarbon Production
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 67, Number 2, March-April 2012
Dossier: Monitoring of CO2 Sequestration and Hydrocarbon Production
Page(s) 193 - 206
DOI https://doi.org/10.2516/ogst/2011172
Published online 13 April 2012
  • Floris F.J.T., Bush M.D., Cuypers M., Roggero F., Syversveen A.R. (2001) Methods for quantifying the uncertainty of production forecasts – a comparative study, Petrol. Geosci. 7, S, 87-96. [CrossRef] [Google Scholar]
  • Morris M.D. (1991) Factorial sampling plans for preliminary computational experiments, Technomectrics 33, 2, 161-74. [Google Scholar]
  • Campolongo F., Cariboni J., Saltelli A. (2007) An effective screening design for sensitivity analysis of large models, Environ. Modell. Software 22, 10, 1509-1518. [CrossRef] [Google Scholar]
  • Sobol I.M. (1990) On sensitivity estimation for nonlinear mathematical models, Mathem. Mod. 2, 1, 112-118. [Google Scholar]
  • Jourdan A. (2000) Analyse statistique et échantillonnage d’expériences simulée, Thèse, Université de Pau et des pays de l’Adour. [Google Scholar]
  • Kennedy M.C., O’Hagan A. (2000) Bayesian calibration of computer models, J.R. Stat. Soc., Ser. B Stat. Methodol. 63, 3, 425-464. [CrossRef] [MathSciNet] [Google Scholar]
  • Marrel A. (2008) Mise en oeuvre et utilisation du métamodèle processus Gaussien pour l’analyse de sensibilité de modèles numériques, Thèse, Institut National des Sciences Appliquées de Toulouse. [Google Scholar]
  • Sacks J., Welch W.J., Mitchell T.J., Wynn H.P. (1989) Design and analysis of computer experiments, Stat. Sci. 4, 409-423. [CrossRef] [MathSciNet] [Google Scholar]
  • Santner T.J., Williams B.J., Notz W.I. (2003) The design and analysis of computer experiments, Springer. [Google Scholar]
  • Scheidt C., Zabalza-Mezghani I., Feraille M., Collombier D. (2007) Toward a Reliable Quantification of Uncertainty on Production Forecasts : Adaptive Experimental Designs, Oil Gas Sci. Technol. 62, 2, 207-224, DOI : 10.2516/ogst :2007018. [CrossRef] [EDP Sciences] [Google Scholar]
  • Scheidt C. (2006) Analyse statistique d’expériences simulées : Modélisation adaptative de réponses non-régulières par krigeage et plans d’expériences – Application à la quantification des incertitudes en ingénierie des réservoirs pétroliers, Thèse, Université Louis Pasteur de Strasbourg. [Google Scholar]
  • Busby D. (2009) Hierarchical adaptive experimental design for Gaussian process emulators, Reliab. Eng. Syst. Safe. 94, 7, 1183-1193. [CrossRef] [Google Scholar]
  • Schonlau M. (1997) Computer Experiments and Global Optimization, Thèse, University of Waterloo. [Google Scholar]
  • Jones D.R., Schonlau M., Welch W.J. (1998) Efficient global optimization of expensive black-box functions, J. Glob. Optim. 13, 4, 455-492. [CrossRef] [Google Scholar]
  • Feraille M., Roggero F. (2004) Uncertainty quantification for mature field combining the Bayesian inversion formalism and experimental design approach, ECMOR IX, Cannes, France, 30 August-2 September. [Google Scholar]
  • Busby D., Feraille M. (2008) Adaptive Design of Experiments for Bayesian Inversion – An Application to Uncertainty Quantification of a Mature Oil Field, J. Phys. : Conf. Ser. 135, 012026, DOI : 10.1088/1742-6596/135/1/01202610.1088/1742-6596/135/1/012026. [Google Scholar]
  • Feraille M., Busby D. (2009) Uncertainty management on a reservoir workflow, International Petroleum Technology Conference, Doha, Qatar, 7-9 December. [Google Scholar]
  • Tarantola A. (2005) Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM. [Google Scholar]
  • Zabalza-Mezghani I., Manceau E., Feraille M., Jourdan A. (2004) Uncertainty Management : From Geological Scenarios to Production Scheme Optimization, J. Petrol. Sci. Eng. 44, 1-2, 11-25, DOI : 10.1016/j.petrol.2004.02.002. [CrossRef] [Google Scholar]
  • Saltelli A., Chan K., Scott E.M. (2000) Sensitivity Analysis, Wiley. [Google Scholar]
  • Efron B., Stein C. (1981) The jackknife estimate of variance, Ann. Statist. 9, 3, 586-596. [CrossRef] [MathSciNet] [Google Scholar]
  • Homma T., Saltelli A. (1996) Importance measures in global sensitivity analysis of model output, Reliab. Eng. Syst. Safe. 52, 1, 1-17. [CrossRef] [Google Scholar]
  • Saltelli A., Ratto M., Andres T., Campolongo F., Cariboni J., Gatelli D., Saisana M., Tarantola S. (2008) Global Sensitivity Analysis, Wiley. [Google Scholar]
  • Welch W., Buck R., Sacks J., Wynn H., Mitchell T., Morris M. (1992) Screening, predicting, and computer experiments, Technometrics 34, 1, 15-25, DOI : 10.2307/1269548. [CrossRef] [Google Scholar]
  • Oakley J., O’Hagan A. (2002) Bayesian inference for the uncertainty distribution, Biometrika 89, 4, 769-784, DOI : 10.1093/biomet/ 89.4.769. [CrossRef] [Google Scholar]
  • McKay M.D., Beckman R.J., Conover W.J. (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics 21, 2, 239-245, DOI : 10.2307/1268522. [CrossRef] [MathSciNet] [Google Scholar]
  • Fang K.T., Li R., Sudjianto A. (2005) Design and modeling for computer experiments, Chapman and Hall/CRC, ISBN : 9781584885467. [Google Scholar]
  • Morris M.D., Mitchell T.J. (1995) Exploratory designs for computational experiments, J. Stat. Plan. Infer. 43, 3, 381-402, DOI : 10.1016/0378-3758(94)00035. [CrossRef] [Google Scholar]
  • Iooss B. (2011) Revue sur l’analyse de sensibilité globale de modèles numériques, Journal de la Société Française de Statistique 152, 1, 3-25. [Google Scholar]
  • Marrel A., Iooss B., Laurent B., Roustant O. (2009) Calculations of Sobol indices for the Gaussian process metamodel, Reliab. Eng. Syst. Safe. 94, 3, 742-751, DOI : 10.1016/j.ress.2008.07.008. [CrossRef] [Google Scholar]
  • Storlie C.B., Swiler L.P., Helton J.C., Salaberry C.J. (2010) Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models, Reliab. Eng. Syst. Safe. 94, 11, 1735-1763, DOI : 10.1016/j.ress.2009.05.007. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.