Dossier: Monitoring of CO2 Sequestration and Hydrocarbon Production
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 67, Number 2, March-April 2012
Dossier: Monitoring of CO2 Sequestration and Hydrocarbon Production
Page(s) 207 - 220
DOI https://doi.org/10.2516/ogst/2011159
Published online 23 April 2012
  • Aanonsen S.I., Aavastamark I., Barkve T., Cominelli A., Gonard R., Gosselin O., Kolasinski M., Rene H. (2003) Effect of scale dependent data correlations in an integrated history matching loop combining production data and 4D seismic data, SPE 79665, SPE RSS, Houston, TX, USA. [Google Scholar]
  • Arenas E., Van Kruijsdijk C., Oldenziel T. (2001) Semi-automatic history matching using the pilot point method including time-lapse seismic data, SPE 71634, SPE ATCE, New Orleans, LA, USA, 30 September-3 October. [Google Scholar]
  • Aziz K., Settari A. (1979) Petroleum reservoir simulation, Applied Science Publishers. [Google Scholar]
  • Caers J. (2003) Geostatistical history matching under training-image based geological constraints, SPE J. 8, 3, 218-226. [Google Scholar]
  • Castro S., Caers J., Durlofsky L. (2006) Improved modeling of 4D seismic response using flow-based downscaling of coarse grid saturations, 10th ECMOR, Amsterdam, The Netherlands, A024. [Google Scholar]
  • Chilès J.P., Delfiner P. (1999) Geostatistics : Modeling Spatial Uncertainty, Wiley, New York, 695 p. [Google Scholar]
  • Doligez B., Beucher H., Lerat O., Souza O. (2007) Use of a Seismic Derived Constraint : Different Steps and Joined Uncertainties in the Construction of a Realistic Geological Model, Oil Gas Sci. Technol. 62, 2, 237-248. [CrossRef] [EDP Sciences] [OGST] [Google Scholar]
  • Dutton S.P., Flers W.A., Barton M.D. (2003) Reservoir characterization of a Permian deep-water sandstone, East Ford Field, Delaware Basin, Texas, AAPG Bull. 87, 609-627. [CrossRef] [Google Scholar]
  • Eaton T.T. (2006) On the importance of geological heterogeneity for flow simulation, Sediment. Geol. 184, 3-4, 187-201. [CrossRef] [Google Scholar]
  • Enchery G., Le Ravalec-Dupin M., Roggero F. (2007) An improved pressure and saturation downscaling process for a better integration of 4D seismic data together with production history, SPE 107088, SPE Europec/EAGE, London, UK, 11-14 June. [Google Scholar]
  • Fornel A., Mezghani M., Langlais V. (2007) Using production data and time domain seismic attributes for history matching, in Special Rock physics and geomechanics in the study of reservoirs and repositories, David C. and Le Ravalec-Dupin M. (eds), Publication Series of the Geological Society of London 284, 147-159. [Google Scholar]
  • Gassmann F. (1951) Uber die elastizitat poroser Medien, Vier. Der Natur Gesellschaft 96, 1-23. [Google Scholar]
  • Gervais V., Gautier Y., Le Ravalec M., Roggero F. (2007) History matching using local gradual deformation, SPE/EUROPEC, London, UK, 11-14 June, SPE 107173. [Google Scholar]
  • Gervais V., Roggero F. (2010) Integration of 4D seismic data in a history matching process using an efficient local parameterization, J. Petrol. Sci. Eng. 73, 1-2, 86-98. DOI : 10.1016/j.petrol2010.05.010. [Google Scholar]
  • Gervais V., Roggero F., Feraille M., Le Ravalec M., Seiler A. (2010) Joint history matching of prediction and 4D-seismic related data for a North Sea field case, SPE 135116, SPE ATCE, Florence, Italy, 19-22 September. [Google Scholar]
  • Goovaerts P. (1997) Geostatistics for Natural Resources Evaluation, Oxford Press, New York, 483 p. [Google Scholar]
  • Gosselin O., Van De Berg S., Cominelli A. (2001) Integrated history matching of production and seismic data, SPE ATCE, New Orleans, LA, USA. [Google Scholar]
  • Hoffman B., Caers J. (2005) Regional probability perturbations for history matching, J. Petrol. Sci. Eng. 46, 53-71. [CrossRef] [Google Scholar]
  • Hu L.-Y. (2000) Gradual deformation and iterative calibration of Gaussian-related stochastic models, Math. Geol. 32, 1, 87-108. [CrossRef] [MathSciNet] [Google Scholar]
  • Hu L.-Y., Blanc G., Noetinger B. (2001) Gradual deformation and iterative calibration of sequential stochastic simulations, Math. Geol. 33, 4, 475-489. DOI :10.1023/A :1011088913233. [CrossRef] [Google Scholar]
  • Hu L.-Y., Jenni S. (2005) History-matching of object based stochastic reservoir models, SPE J. 10, 3, SPE 81503. [Google Scholar]
  • Hu L.-Y., Le Ravalec-Dupin M. (2004) Elements for an integrated geostatistical modeling of heterogeneous reservoirs, Oil Gas Sci. Technol. 59, 2, 141-155. [CrossRef] [EDP Sciences] [Google Scholar]
  • Jacquard P., Jaïn C. (1965) Permeability distribution from fluid pressure data, SPE J. 5, 4, 281-294. [Google Scholar]
  • Journel A.G., Gundeso R., Gringarten E., Yao T. (1998) Stochastic modelling of a fluvial reservoir : a comparative review of algorithms, J. Petrol. Sci. Eng. 21, 95-121. [CrossRef] [Google Scholar]
  • Kawar R., Calvert R., Khan M. (2003) The work flow of 4D seismic, SPE 81527, SPE 13th Middel Oil Show & Conference. [Google Scholar]
  • Landa, J., Horne R. (1997) A procedure to integrate well test data, reservoir performance history and 4D seismic information into a reservoir description, SPE 38653, SPE ATCE, San Antonio, TX, USA. [Google Scholar]
  • Le Ravalec-Dupin M. (2005) Inverse stochastic modeling of flow in porous media – Application to reservoir characterization, Editions Technip, ISBN 2-7108-0864-1. [Google Scholar]
  • Le Ravalec-Dupin M. (2010) Pilot block method methodology to calibrate stochastic permeability fields to dynamic data, Math. Geosc. 42, 2, 165-185. DOI : 10.1007/s11004-009-9249-x. [CrossRef] [Google Scholar]
  • Le Ravalec-Dupin M., Coureaud B., Nicolas L., Roggero F. (2004) Conditioning an underground gas storage site to well pressures, Oil Gas Sci. Technol. 59, 6, 611-624. [CrossRef] [EDP Sciences] [Google Scholar]
  • Le Ravalec-Dupin M., Da Veiga S. (2011) Cosimulation as a perturbation method for calibrating porosity and permeability fields to dynamic data, Comput. Geosci., DOI :10.1016/j.cageo.2010.10.013. [Google Scholar]
  • Le Ravalec-Dupin M., Fenwick D. (2002) A combined geostatistical and streamline-based history matching procedure, SPE ATCE, SPE 77378, San Antonio, TX, USA. [Google Scholar]
  • Nelson R.W. (1960) In place measurement of permeability in heterogeneous media, 1. Theory of a proposed method, J. Geophys. Res. 65, 6, 1753-1760. [CrossRef] [Google Scholar]
  • Neuman S.P. (1973) Calibration of distributed parameter groundwater flow models viewed as a multi-objective decision process under uncertainty, Water Resour. Res. 9, 4, 1006-1021. [CrossRef] [Google Scholar]
  • Oliver D., Reynolds A., Liu N. (2008) Inverse theory for petroleum reservoir characterization and history matching, Cambridge University Press, Cambridge, UK. [Google Scholar]
  • Peters E., Arts R.J., Brouwer G.K., Geel C.R. (2009) Results of the Brugge benchmark study for flooding optimization and history matching, SPE 119094, SPE RSS, The Woodlands, TX, USA, 2-4 February. [Google Scholar]
  • Pianelo L., Guérillot D., Gallouet T. (2000) Coupled inversion of permeability and acoustic impedance : An outstanding data integration, 7th European Conference on the Mathematics of Oil Recovery, M16, Baveno, Italy. [Google Scholar]
  • Ponsot-Jacquin C., Roggero F., Enchéry G. (2009) Calibration of facies proportions through a history-matching process, B. Soc. Geol. Fr. 180, 5, 387-397. [CrossRef] [Google Scholar]
  • Pourpak H., Bourbiaux B., Roggero F., Delay F. (2009) An integrated methodology for calibrating a heterogeneous/fractured reservoir model from wellbore flow measurements : Case study, SPE Reserv. Eval. Eng. 12, 3, 433-445. [Google Scholar]
  • RamaRao B.S., Lavenue A.M., de Marsily G., Marietta M.G. (1995) Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields. Part 1. Theory and computational experiments, Water Resour. Res. 31, 3, 475-493. [CrossRef] [Google Scholar]
  • Renard P., de Marsily G. (1997) Calculating equivalent permeability : a review, Adv. Water Resour. 20, 5-6, 253-278. [CrossRef] [Google Scholar]
  • Roggero F., Ding D.Y., Berthet P., Lerat O., Cap J., Schreiber P.E. (2007) Matching of production history and 4D seismic data – Application to the Girassol field, offshore Angola, SPE ATCE, Anaheim, CA, USA, SPE 109929. [Google Scholar]
  • Salles T., Lopez S., Cacas M.C., Mulder T. (2007) Cellular automata model of density currents, Geomorphology 88, 1-2, 1-20. [CrossRef] [Google Scholar]
  • Soltani A., Le Ravalec-Dupin M., Fourar M., Rosenberg E. (2010) Three-dimensional characterization of permeability at the core scale, Transport Porous Med. 84, 2, 285-305, DOI : 10.1007/s11242-009- 9501-3. [CrossRef] [Google Scholar]
  • Stephen K., MacBeth C. (2006) Seismic history matching in the Schiehallion UKCS field, First Break 24, 43-49. [Google Scholar]
  • Strebelle S. (2002) Conditional simulation of complex geological structures using multiple-point statistics, Math. Geol. 34, 1-22. [CrossRef] [MathSciNet] [Google Scholar]
  • Sun N.-Z. (1995) Inverse Problems in Groundwater Modeling, Kluwer Academic Publishers, Dordrecht, The Netherlands, 337 p. [Google Scholar]
  • Tarantola A. (1987) Inverse Problem Theory – Methods for Data Fitting and Model Parameter Estimation, Elsevier Science Publishers, Amsterdam, The Netherlands, 613 p. [Google Scholar]
  • Tillier E., Enchery G., Le Ravalec M., Gervais V. (2010) Local and continuous updating of facies proportions for history-matching, J. Petrol. Sci. Eng. 73, 3-4, 194-203. DOI : 10.1016/j.petrol2010.05.014. [CrossRef] [Google Scholar]
  • Tillier E., Le Ravalec M., Roggero F. (2010) Using time domain seismic data for history matching processes, EAGE, Barcelona, Spain. [Google Scholar]
  • Tychonoff A.N., Arsenin V.Y. (1977) Solution of Ill-posed Problems, Winston & Sons, Washington. Waggoner J., Cominelli A., Seymour R. (2002) Improved reservoir modeling with time-lapse seismic in a Gulf of Mexico gas condensate reservoir, SPE 77514, SPE ATCE, San Antonio, TX, USA. [Google Scholar]
  • Yeh W.W.G. (1986) Review of parameter identification procedures in groundwater hydrology : The inverse problem, Water Resour. Res. 22, 95-108. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.