Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Number 6, November-December 2011
Page(s) 1035 - 1051
Published online 15 September 2011
  • Schechter M. (1999) New cycles for automobile engines (1999) SAE Technical Paper 1999-01-0623. [Google Scholar]
  • Higelin P., Charlet A., Chamaillard Y. (2002) Thermodynamic Simulation of a Hybrid Pneumatic-Combustion Engine Concept, J. Appl. Thermodynamics 5, 1, 1-11. [Google Scholar]
  • Donitz C., Vasile I., Onder C., Guzzella L. (2009) Realizing a concept for high efficiency and excellent driveability: The downsized and supercharged hybrid pneumatic engine, SAE paper 2009-01-1326. [Google Scholar]
  • Andersson M., Johansson B., Hultqvist A. (2005) An Air Hybrid for High Power Absorption and Discharge, SAE paper 2005-01-2137. [Google Scholar]
  • Tai C., Tsao T., Levin M.B., Schechter M.M. (2003) Using Camless Valvetrain for Air Hybrid Optimization, SAE paper 2003-01-0038. [Google Scholar]
  • Trajkovic S., Tunestal P., Johanssonn B. (2008) Investigation of Different Valve Geometries and Valve Timing Strategies and their Effect on Regenerative Efficiency for a Pneumatic Hybrid with Variable Valve Actuation, SAE paper 2008-01-1715. [Google Scholar]
  • Donitz C., Vasile I., Onder C., Guzzella L. (2009) Modelling and optimizing two- and four-stroke hybrid pneumatic engines Proc. IMechE Part D: J. Automobile Engineering 223, 2, 255-280. [CrossRef] [Google Scholar]
  • Ivanco A., Colin G., Chamaillard Y., Charlet A., Higelin P. (2009) Energy Management Strategies for a Pneumatic-Hybrid Engine Based on Sliding Window Pattern Recognition, Oil Gas Sci. Technol. - Rev. IFP 65, 1, 179–190. [CrossRef] [EDP Sciences] [Google Scholar]
  • Trajkovic S., Per T., Bengt J. (2010) Vehicle Driving Cycle Simulation of a Pneumatic Hybrid Bus Based on Experimental Engine Measurements, SAE paper 2010-01-0825. [Google Scholar]
  • Elgowainy A., Burnham A., Wang M., Molburg J., Rousseau A. (2009) Well-To-Wheels Use and Greenhouse Gas Emissions of Plug-in-Hybrid Electric Vehicles, SAE paper 2009-01-1309. [Google Scholar]
  • Brejaud P., Charlet A., Chamaillard Y., Ivanco A., Higelin P. (2009) Pneumatic-Combustion Hybrid Engine: A Study of the Effect of the Valvetrain Sophistication on Pneumatic Modes, Oil Gas Sci. Technol. - Rev. IFP 65, 1, 27–37. [CrossRef] [EDP Sciences] [Google Scholar]
  • Wu Y.Y., Chen B.C., Hsieh F.C., Ke C.T. (2009) Heat transfer model for small-scale spark-ignition engines, Int. J. Heat Mass Trans. 52, 7-8, 1875-1886. [Google Scholar]
  • Thombare D.G., Verma S.K. (2008) Technological development in the Stirling cycle engines, Renew. Sust. Energ. Rev. 12, 1, 1-38. [Google Scholar]
  • Woshni G.A. (1967) Universally application equation for instantaneous heat transfer coefficient in internal combustion engine, SAE 76, 670931, 3065-3083. [Google Scholar]
  • Annand W.J.D. (1963) Heat transfer in the cylinders of reciprocating internal combustion engines, Proc. IMechE Part E: J. Process Mechanical Engineering 177, 973-990. [Google Scholar]
  • Eichelberg G. (1939) Some new investigations on old combustion engine problems, Engineering 148, 446-463; [Google Scholar]
  • Engineering 148, 547-560. [Google Scholar]
  • Hohenberg G.F. (1979) Advanced approaches for heat transfer calculations, Diesel Engine Thermal Loading, SAE Technical paper SAE SP-449. [Google Scholar]
  • Yang J. (1988) Convective heat transfer predictions and experiments in an IC engine, PhD Thesis, University of Wisconsin-Madison. [Google Scholar]
  • Ohkubo Y., Ohtsuka M., Kato J., Kozuka K., Sugiyama K. (1984) Velocity measurements by back-scattered LDV, 4th Joint Symposium on Internal Combustion Engines. [Google Scholar]
  • Arcoumanis C., Cuttera P., Whitelawa D.S. (1998) Heat Transfer Processes in Diesel Engines, Chem. Eng. Res. Des. 76, 2, 124-132. [CrossRef] [Google Scholar]
  • Sanli A., Ozsezen A.N., Kilicaslan I., Canakci M. (2007) The influence of engine speed and load on the heat transfer between gases and in-cylinder walls at fired and motored conditions of an IDI diesel engine, Appl. Therm. Eng. 28, 11-12, 1395-1404. [Google Scholar]
  • Li Y., Zhao H., Peng Z., Ladommatos N. (2001) Analysis of tumble and swirl motions in a Four-Valve SI Engine (2001), SAE Technical paper 2001-01-3555. [Google Scholar]
  • Arcoumanis C., Bae C.S., Hu Z. (1994) Flow and combustion in a Four-Valve Spark Ignitin Optical Engine, SAE Technical paper 940475. [Google Scholar]
  • Kang K.Y., Baek J.H. (1995) LDV measurement and analysis of tumble formation and decay in a four-valve engine, Exper. Therm. Fluid Sci. 11, 2, 181-189. [CrossRef] [Google Scholar]
  • Huang R.F., Yang H.S., Yeh C.-N. (2008) In-cylinder flows of a motored four-stroke engine with flat-crown and slightly concave-crown pistons, Exper. Therm. Fluid Sci. 32, 5, 1156-1167. [CrossRef] [Google Scholar]
  • Huang R.F., Huang C.W., Chang S.B., Yang H.S., Lin T.W., Hsu W.Y. (2005) Topological flow evolutions in cylinder of a motored engine during intake and compression strokes, J. Fluids Struct. 20, 1, 105-127. [CrossRef] [Google Scholar]
  • Lin L., Shulin D., Jin X., Jinxiang W., Xiaohong G. (2000) Effetcs of combustion chamber geometry on in-cylinder air motion and performance in DI Diesel Engine, SAE Technical paper 2000-01-0510. [Google Scholar]
  • Kawashima J.I., Ogawa H., Tsuru Y. (1998) Research on a variable swirl Intake port for 4-valve Hi-speed DI Diesel Engines, SAE Technical paper 982680. [Google Scholar]
  • Wu H.W., Perng S.W. (2002) LES analysis of turbulent flow and heat transfer in motored engines with various SGS models, Int. J. Heat Mass Trans. 45, 11, 2315-2328. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.