- Al Wahabi S.M., Froment G.F. (2004) Single Event Kinetic Modeling of the Methanol-to-Olefins Process on SAPO-34, Ind. Eng. Chem. Res. 43, 5098-5111. [CrossRef] [Google Scholar]
- Baltanas M.A., Vansina H., Froment G.F. (1983) Hydroisomerization and Hydrocracking V - Kinetic Analysis of Rate Data for N-Octane, Ind. Eng. Chem. Prod. Res. Dev. 22, 531-539. [CrossRef] [Google Scholar]
- Baltanas M.A.Froment G.F. (1985) Computer generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins on Pt-containing bifunctional catalysts, Comput. Chem. Eng. 9, 71-81. [CrossRef] [Google Scholar]
- Baltanas M.A., Van Raemdonck K.K., Froment G.F., Mohedas S.R. (1989) Fundamental kinetic modeling of hydroisomerization and hydrocracking on noble-metal-loaded faujasites. 1. Rate parameters for hydroisomerization, Ind. Eng. Chem. Res. 28, 899-910. [CrossRef] [Google Scholar]
- Beirnaert H.C., Alleman J.R., Marin G.B. (2001) A Fundamental Kinetic Model for the Catalytic Cracking of Alkanes on a USY Zeolite in the Presence of Coke Formation, Ind. Eng. Chem. Res. 40, 5, 1337-1347. [CrossRef] [Google Scholar]
- Benson S.W., Cruickshank F.R., Golden D.M., Haugen G.R., O’Neal H.E., Rodgers A.S., Shaw R., Walsch R. (1969) Additivity rules for estimation of thermodynamical properties, Chem. Rev. 69 279-324. [Google Scholar]
- Benson S.W. (1976) Thermochemical kinetics, second edition, Wiley & Sons, New York. [Google Scholar]
- Chavarría-Hernandez J.C., Ramírez J., Gonzalez H., Baltanas M.A. (2004) Modelling of n-hexadecane Hydroisomerization and Hydrocracking Reactions on a Mo/H Beta-Alumina Bi-Functional Catalyst Using the Single Event Concept, Catal. Today 98, 1-2, 235-242. [CrossRef] [Google Scholar]
- Chavarría-Hernandez J.C., Ramírez J., Baltanas M.A. (2008) Single-event-lumped-parameter hybrid (SELPH) model for nonideal hydrocracking of n-octane, Catal. Today 130, 2-4, 455-461. [CrossRef] [Google Scholar]
- Chavarría-Hernández J.C., Ramírez J. (2009) Modeling Ideal and Nonideal Hydrocracking of Paraffins Using the Single-Event Lumped Parameter Hybrid (SELPH) Model, Ind. Eng. Chem. Res. 48, 3, 1203-1207. [CrossRef] [Google Scholar]
- Choudhury I.R., Thybaut J.W., Balasubramanian P., Denayer J.F.M., Martens J.A., Marin G.B. (2010) Synergy between shape selective and non-shape selective bifunctional zeolites modelled via the Single-Event MicroKinetic (SEMK) methodology, Chem. Eng. Sci. 65, 174-178. [CrossRef] [Google Scholar]
- Cochegrue H., Gauthier P., Verstraete J.J., Surla K., Guillaume D., Galtier P., Barbier J. (2011) Reduction of single event kinetic models by rigorous relumping: application to the catalytic reforming, Oil Gas Sci. Technol., 66, 367-397. [Google Scholar]
- Debrabandere B., Froment G.F. (1997) Influence of the Hydrocarbon Chain Length on the Kinetics of the Hydroisomerization and Hydrocracking of n-Paraffins, in Hydrotreatment and Hydrocracking of Oil Fractions, Elsevier Science Publ. BV, Amsterdam, 106, pp. 379-389. [Google Scholar]
- Denayer J.F., Baron G.V. (1998) Chromatographic study of adsorption of n-alkanes on zeolites at high temperatures, J. Phys. Chem. B 102, 3077-3081. [CrossRef] [Google Scholar]
- Dewachtere N.V., Santaella F., Froment G.F. (1999) Application of a single-event kinetic model in the simulation of an industrial riser reactor for the catalytic cracking of vacuum gas oil, Chem. Eng. Sci. 54, 15-16, 3653-3660. [CrossRef] [Google Scholar]
- Feng W., Vynckier E., Froment G.F. (1993) Single-event kinetics of catalytic cracking, Ind. Eng. Chem. Res. 32, 12, 2997-3005. [CrossRef] [Google Scholar]
- Froment G.F. (1999) Kinetic modeling of acid-catalyzed oil refining processes, Catal. Today 52, 153-163. [Google Scholar]
- Froment G.F. (2005) Single Event Kinetic Modeling of Complex Catalytic Processes, Catal. Rev. 47, 83-124. [Google Scholar]
- Goffe W.L., Ferrier G.D., Rogers J. (1994) Global Optimization of Statistical Functions with Simulated Annealing, J. Econom. 60 1-2, 65-99. [Google Scholar]
- Guillaume D. (2006) Network Generation of Oligomerization Reactions: Principles, Ind. Eng. Chem. Res. 45, 13, 4554-4557. [CrossRef] [Google Scholar]
- Guillaume D., Surla K., Galtier P. (2003a) From Single Events theory to molecular kinetics - application to industrial process modeling, Chem. Eng. Sci. 58, 21, 4861-4869. [Google Scholar]
- Guillaume D., Valéry E., Surla K., Galtier P., Verstraete J., Schweich D. (2003b) Single Events Modeling - extension to large networks, Communication at ECCE4, Grenade, Espagne [Google Scholar]
- Hindmarsch A.C. (1980) LSODE and LSODI, Two New Initial Value Ordinary Differential Equation Solvers, A.C.M., Signum Newsl. 15, 4, 19-21. [Google Scholar]
- Hindmarsch A.C. (1983) ODEPACK, a systematized collection of ODE solvers, in Scientific Computing, Stepleman R.S. et al. (eds), IMACS, North-Holland, Amsterdam, pp. 55-64. [Google Scholar]
- Kumar H., Froment G.F. (2007a) A generalized mechanistic kinetic model for the hydroisomerization and hydrocracking of long-chain paraffins, Ind. Eng. Chem. Res. 46, 12, 4075-4090. [CrossRef] [Google Scholar]
- Kumar H., Froment G.F. (2007b) Mechanistic Kinetic Modeling of the Hydrocracking of Complex Feedstocks, such as Vacuum Gas Oils, Ind. Eng. Chem. Res. 46, 18, 5881-5897. [CrossRef] [Google Scholar]
- Laxmi Narasimhan C.S., Thybaut J.W., Marin G.B., Martens J.A., Denayer J.F., Baron G.V. (2003a) Pore mouth physisorption of alkanes on ZSM-22: estimation of physisorption enthalpies and entropies by additivity method, J. Catal. 218, 1, 135-147. [CrossRef] [Google Scholar]
- Laxmi Narasimhan C.S., Thybaut J.W., Marin G.B., Jacobs P.A., Martens J.A., Denayer J.F., Baron G.V. (2003b) Kinetic modeling of pore mouth catalysis in the hydroconversion of n-octane on Pt-HZSM- 22, J. Catal. 220, 2, 399-413. [CrossRef] [Google Scholar]
- LaxmiNarasimhan C.S., Thybaut J.W., Marin G.B., Denayer J.F., Baron G.V., Martens J.A., Jacobs P.A. (2004) Relumped singleevent microkinetic model for alkane hydrocracking on shape-selective catalysts: catalysis on ZSM-22 pore mouths, bridge acid sites and micropores, Chem. Eng. Sci. 59, 22-23, 4765-4772. [Google Scholar]
- Laxmi Narasimhan C.S., Thybaut J.W., Martens J.A., Jacobs P.A., Denayer J.F., Marin G.B. (2006) A unified single-event microkinetic model for alkane hydroconversion in different aggregation states on Pt/H-USY-zeolites, J. Phys. Chem. B 110, 13, 6750-6758. [CrossRef] [PubMed] [Google Scholar]
- Laxmi Narasimhan C.S., Thybaut J.W., Denayer J.F., Baron G.V., Jacobs P.A., Martens J.A., Marin G.B. (2007) Aggregation state effects in shape-selective hydroconversion, Ind. Eng. Chem. Res. 46, 25, 8710-8721. [CrossRef] [Google Scholar]
- Levenberg K. (1944) A Method for the Solution of Certain Problems in Least Squares, Quart. Appl. Math. 2, 2, 164-168. [Google Scholar]
- Marquardt D. (1963) An Algorithm for Least-Squares Estimation of Nonlinear Parameters, J. Soc. Ind. Appl. Math. 11, 2, 431-441. [Google Scholar]
- Martens G.G. (2000) Hydrocracking on Pt/USY zeolites: Fundamental kinetic modelling and industrial reactor simulation, PhD Thesis, University of Ghent. [Google Scholar]
- Martens G.G., Froment G.F. (1999) Kinetic modeling of paraffins hydrocracking based upon elementary steps and the single event concept, in Reaction kinetics and the development of catalytic processes, Froment G.F., Waugh K.C. (eds), Elsevier Science BV, Stud. Surface Sci. Catal. 122, 333-340. [Google Scholar]
- Martens G.G., Marin G.B., Martens J.A., Jacobs P.A., Baron G.V. (2000) A fundamental kinetic model for hydrocracking of C8 to C12 alkanes on Pt/US-Y zeolites, J. Catal. 195, 2, 253-267. [Google Scholar]
- Martens G.G., Marin G.B. (2001) Kinetics for hydrocracking based on structural classes: Model development and application, AIChE J. 47, 7, 1607-1622. [CrossRef] [Google Scholar]
- Martens G.G., Thybaut J.W., Marin G.B. (2001) Single event rate parameters for hydrocracking of cycloalkanes on Pt/US-Y zeolites, Ind. Eng. Chem. Res. 40, 1832-1844. [CrossRef] [Google Scholar]
- Martinis J.M., Froment G.F. (2006) Alkylation on Solid Acids. Part 2. Single-Event Kinetic Modeling, Ind. Eng. Chem. Res. 45, 954. [CrossRef] [Google Scholar]
- Mitsios M., Guillaume D., Galtier P., Schweich D. (2009) Single- Event Microkinetic Model for Long-Chain Paraffin Hydrocracking and Hydroisomerization on an Amorphous Pt/SiO2-Al2O3 Catalyst, Ind. Eng. Chem. Res. 48 3284-3292. [CrossRef] [Google Scholar]
- Moustafa T., Froment G.F. (2003) Kinetic Modeling of Coke Formation and Deactivation in the Catalytic Cracking of Vacuum Gas Oil, Ind. Eng. Chem. Res. 42, 1, 14-25 [CrossRef] [Google Scholar]
- Park T.-Y., Froment G.F. (2001a) Kinetic Modeling of the MTO Process – I. Model Formulation, Ind. Eng. Chem. Res. 40, 4172-4186. [CrossRef] [Google Scholar]
- Park T.-Y., Froment G.F. (2001b) Kinetic Modeling of the MTO Process – II. Experimental Results, Model Discrimination and Parameter Estimation, Ind. Eng. Chem. Res. 40, 4187-4196. [CrossRef] [Google Scholar]
- Park T.-Y., Froment G.F. (2004) Analysis of fundamental reaction rates in the methanol-to-olefins process on ZSM-5 as a basis for reactor design and operation, Ind. Eng. Chem. Res. 43, 3, 682-689. [CrossRef] [Google Scholar]
- Quintana-Solórzano R., Thybaut J.W., Marin G.B., Lodeng R., Holmen A. (2005) Single-Event MicroKinetics for coke formation in catalytic cracking, Catal. Today 107, 8, 619-629. [CrossRef] [Google Scholar]
- Quintana-Solórzano R., Thybaut J.W., Marin G.B. (2007a) A single-event microkinetic analysis of the catalytic cracking of (cyclo)alkanes on an equilibrium catalyst in the absence of coke formation, Chem. Eng. Sci. 62, 18-20, 5033-5038 [Google Scholar]
- Quintana-Solórzano R., Thybaut J.W., Galtier P., Marin G.B. (2007b) Single-Event MicroKinetics for coke formation during the catalytic cracking of (cyclo)alkane/1-octene mixtures, Catal. Today 127, 1, 17-30. [Google Scholar]
- Quintana-Solorzano R., Thybaut J.W., Galtier P., Marin G.B. (2010) Simulation of an industrial riser for catalytic cracking in the presence of coking using Single-Event MicroKinetics, Catal. Today 150, 319-331. [Google Scholar]
- Schweitzer J.M., Galtier P., Schweich D. (1999) A single events kinetics model for hydrocracking of paraffins in a three phase reactor, Chem. Eng. Sci. 54, 2441-2452. [Google Scholar]
- Shahrouzi J.R., Guillaume D., Rouchon P., Da Costa P. (2008) Stochastic Simulation and Single Events Kinetic Modeling: Application to Olefin Oligomerization, Ind. Eng. Chem. Res. 47, 13, 4308-4316 [CrossRef] [Google Scholar]
- Sotelo-Boyás R., Froment G.F. (2009) Fundamental Kinetic Modeling of Catalytic Reforming, Ind. Eng. Chem. Res. 48, 3, 1107-1119 [CrossRef] [Google Scholar]
- Steijns M., Froment G.F., Jacobs P.A., Uytterhoeven J., Weitkamp J. (1981) Hydroisomerization and Hydrocracking II - Product Distributions, Ind. Eng. Chem. Prod. Res. Dev. 20, 654-660. [CrossRef] [Google Scholar]
- Steijns M., Froment G.F. (1981) Hydroisomerization and Hydrocracking. 3. Kinetic-Analysis of Rate Data for Normal- Decane and Normal-Dodecane, Ind. Eng. Chem. Prod. Res. Dev. 20 4, 660-668. [CrossRef] [Google Scholar]
- Surla K., Vleeming H., Guillaume D., Galtier P. (2004) A single events kinetic model: n-butane isomerization, Chem. Eng. Sci. 59 22-23, 4773-4779. [Google Scholar]
- Surla K., Guillaume D., Verstraete J., Galtier P., Gauthier P., Leroy H. (2011) Reduction of single event kinetic models by rigorous relumping: application to the catalytic reforming, Oil Gas Sci. Technol., 66, 343-365. [Google Scholar]
- Svoboda G.D., Vynckier E., Debrabandere B.Froment G.F. (1995) Single event rate parameters for paraffin hydrocracking on a Pt/USY zeolite, Ind. Eng. Chem. Res. 34, 3793-3800. [Google Scholar]
- Thybaut J.W., Marin G.B., Baron G.V., Jacobs P.A., Martens J.A. (2001) Alkene protonation enthalpy determination from fundamental kinetic modeling of alkane hydroconversion on Pt/H-(US)YZeolite, J. Catal. 202, 324-339. [Google Scholar]
- Thybaut J.W., Marin G.B. (2003) Kinetic Modeling of the Conversion of Complex Hydrocarbon Feedstocks by Acid Catalysis, Chem. Eng. Technol. 26, 4, 509-514. [CrossRef] [Google Scholar]
- Thybaut J.W., Choudhury I.R., Denayer J.F., Baron G.V., Jacobs P.A., Martens J.A., Marin G.B. (2009) Design of optimum zeolite pore system for central hydrocracking of long-chain n-alkanes based on a Single-Event MicroKinetic model, Topics Catal. 52, 9, 1251-1260. [Google Scholar]
- Valéry E. (2000) Modélisation cinétique des réactions catalytiques d’hydrocraquage par la théorie des événements constitutifs, Internal IFP Report [Google Scholar]
- Valéry E. (2002) Application de la théorie des événements constitutifs à l’hydrocraquage de paraffines lourdes, PhD Thesis, Institut Francais du Petrole. [Google Scholar]
- Valéry E., Guillaume D., Surla K., Galtier P., Verstraete J., Schweich D. (2007) Kinetic modeling of acid catalyzed hydrocracking of heavy molecules: application to squalane, Ind. Eng. Chem. Res. 46, 14, 4755-4763. [CrossRef] [Google Scholar]
- Vansina H., Baltanas M.A., Froment G.F. (1983) Hydroisomerization and Hydrocracking. 4. Product Distribution from n-Octane and 2,2,4-Trimethylpentane, Ind. Eng. Chem. Prod. Res. Dev. 22 4, 526. [CrossRef] [Google Scholar]
- Vynckier E., Froment G.F. (1991) Modeling of the kinetics of complex processes upon elementary steps, in Kinetic and thermodynamic lumping of multicomponent mixtures, Starita G., Sandler S.I. (eds), Elsevier Science Publishers B.V., Amsterdam, The Netherlands, pp. 131-161. [Google Scholar]
- Wei J., Kuo J.C.W. (1969) Lumping Analysis in Monomolecular Reaction Systems. Analysis of the Exactly Lumpable System, Ind. Eng. Chem. Fundam. 8, 114-123. [CrossRef] [Google Scholar]
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Number 3, May-June 2011
Dossier: Chemical Reaction Modelling of Refining Processes
|
|
---|---|---|
Page(s) | 399 - 422 | |
DOI | https://doi.org/10.2516/ogst/2011118 | |
Published online | 05 August 2011 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.