Dossier: Chemical Reaction Modelling of Refining Processes
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Number 3, May-June 2011
Dossier: Chemical Reaction Modelling of Refining Processes
Page(s) 367 - 397
DOI https://doi.org/10.2516/ogst/2011122
Published online 05 August 2011
  • Al Wahabi S.M., Froment G.F. (2004) Single Event Kinetic Modeling of the Methanol-to-Olefins Process on SAPO-34, Ind. Eng. Chem. Res. 43, 17, 5098-5111. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Ancheyta-Juárez J., Villafuerte-Macías E., Diaz-García L., González-Arredondo E. (2001) Modeling and Simulation of Four Catalytic Reactors in Series for Naphtha Reforming, Energ. Fuel. 15, 4, 887-893. [CrossRef]
  • Baltanas M.A., Froment G.F. (1985) Computer generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins on Pt-containing bifunctional catalysts, Comp. Chem. Eng. 9, 1, 71-81. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Baltanas M.A., Van Raemdonck K.K., Froment G.F., Mohedas S.R. (1989) Fundamental kinetic modeling of hydroisomerization and hydrocracking on noble metal-loaded faujasites. 1. Rate parameters for hydroisomerization, Ind. Eng. Chem. Res. 28, 7, 899-910. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Battin-Leclerc F., Glaude P.A., Warth V., Fournet R., Scacchi G., Come G.M. (2000) Computer tools for modelling the chemical phenomena related to combustion, Chem. Eng. Sci. 55, 15, 2883-2893. [CrossRef]
  • Benson S.W., Cruickshank F.R., Golden D.M., Haugen G.R., O’Neal H.E., Rodgers A.S., Shaw R., Walsch R. (1969) Additivity rules for estimation of thermodynamical properties, Chem. Rev. 69 279-324. [CrossRef]
  • Benson S.W. (1976) Thermochemical Kinetics, 2nd Edition, John Wiley & Sons, New York.
  • Blurock E.S. (1995) Reaction: System for Modeling Chemical Reactions, J. Chem. Inf. Comput. Sci. 35, 3, 607-616. [CrossRef]
  • Bockhorn H. (1990) Mathematical modeling, in Ullmann’s Encyclopedia of Industrial Chemistry, 5th edition, Elvers B., Hawkins S., Schultz G., Hofmann H. (eds), VCH Verlagsgesellschaft mbH, Weinheim, B1, 2.1-2.102.
  • Broadbelt L.J., Stark S.M., Klein M.T. (1994) Computer-generated Pyrolysis Modeling – on-the-fly Generation of Species, Reactions, and Rates, Ind. Eng. Chem. Res. 33, 4, 790-799. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Broadbelt L.J., LaMarca C., Klein M.T., Dean B.D., Andrews S.M. (1995) Chemical Modeling Analysis of Poly(aryl ether sulfone) Thermal Stability through Computer-Generated Reaction Mechanisms, Ind. Eng. Chem. Res. 34, 12, 4212-4221. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Brouwer D.M. (1980) Reactions of alkylcarbenium ions in reaction to isomerization and cracking of hydrocarbons, in Chemistry and Chemical Engineering of Catalytic Processes GCAS, Prins R. (ed), Alphen aan de Rijn, The Netherlands, Sijthoff & Noordhoff.
  • Bruk L.G., Gorodskii S.N., Zeigarnik A.V., Valdés-Pérez R.E., Temkin O.N. (1998) Oxidative carbonylation of phenylacetylene catalyzed by Pd(II) and Cu(I): Experimental tests of forty-one computer- generated mechanistic hypotheses, J. Mol. Catal. A: Chem. 130, 1-2, 29-40. [CrossRef]
  • Buda F., Heyberger B., Fournet R., Glaude P.A., Warth V., Battin-Leclerc F. (2006) Modeling of the gas-phase oxidation of cyclohexane, Energ. Fuel. 20, 4, 1450-1459. [CrossRef]
  • Burch R., Garla L.C. (1981) Platinum-Tin Reforming Catalysts. II. Activity and Selectivity in Hydrocarbon Reactions, J. Catal. 71 360-372 [CrossRef]
  • Chavarría-Hernández J.C., Ramírez J., Gonzalez H., Baltanas M.A. (2004) Modelling of n-Hexadecane Hydroisomerization and Hydrocracking Reactions on a Mo/H Beta-Alumina Bi-Functional Catalyst Using the Single Event Concept, Catal. Today 98, 1-2, 235-242. [CrossRef]
  • Chavarria-Hernandez J.C., Ramirez J., Baltanas M.A. (2008) Single-event-lumped-parameter hybrid (SELPH) model for nonideal hydrocracking of n-octane, Catal. Today 130, 2-4, 455-461. [CrossRef]
  • Chevalier C., Warnatz J., Melenk H. (1990) Automatic Generation of Reaction Mechanisms for Description of Oxidation of Higher Hydrocarbons, Ber. Bunsenges. Phys. Chem. 94, 1362-1367.
  • Chevalier C., Pitz W.J., Warnatz J., Westbrook C.K., Melenk H. (1992) Hydrocarbon Ignition: Automatic Generation of Reaction Mechanisms and Applications to Modeling of Engine Shock, Proc. Combust. Inst. 24, 1362-1367.
  • Chinnick S.J., Baulch D.L., Ayscough P.B. (1988) An expert system for hydrocarbon pyrolysis reactions, Chemom. Intell. Lab. Syst. 5, 1, 39-52. [CrossRef]
  • Christensen G., Apelian M.R., Hickey K.J., Jaffe S.B. (1999) Future directions in modeling the FCC process: An emphasis on product quality, Chem. Eng. Sci. 54, 13-14, 2753-2764. [CrossRef]
  • Ciapetta F.C. (1961) Catalytic Reforming, Petro/Chem. Engr. 33, 5, C19-C31.
  • Ciapetta F.C., Wallace D.N. (1971) Catalytic Naphtha Reforming, Catal. Rev. 5, 67-158. [CrossRef]
  • Clymans P.J., Froment G.F. (1984) Computer generation of reaction paths and rate equations in the thermal cracking of normal and branched paraffins, Comput. Chem. Eng. 8, 2, 137-142. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Cochegrue H. (2001) Modelisation cinetique du reformage catalytique sur catalyseur Pt-Sn/Al2O3, PhD Thesis, Universite de Poitiers.
  • Davis B.H. (1999) Alkane dehydrocyclization mechanism, Catal. Today 53, 3, 443-516 [CrossRef]
  • Dente M., Pierucci S., Ranzi E., Bussani G. (1992) New improvements in modeling kinetic schemes for hydrocarbons pyrolysis reactors, Chem. Eng. Sci. 51, 2629-2634.
  • Dewachtere N.V., Santaella F., Froment G.F. (1999) Application of a single-event kinetic model in the simulation of an industrial riser reactor for the catalytic cracking of vacuum gas oil, Chem. Eng. Sci. 54, 15-16, 3653-3660. [CrossRef]
  • DeWitt M.J., Dooling D.J., Broadbelt L.J. (2000) Computer Generation of Reaction Mechanisms Using Quantitative Rate Information: Application to Long-Chain Hydrocarbon Pyrolysis, Ind. Eng. Chem. Res. 39, 7, 2228-2237. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • DiMaio F.P., Lignola P.G. (1992) KING, a Kinetic Network Generator, Chem. Eng. Sci. 47, 9-11, 2713-2718. [CrossRef]
  • Faulon J.L., Sault A.G. (2001) Stochastic Generator of Chemical Structure. 3. Reaction Network Generation, J. Chem. Inf. Comp. Sci. 41, 4, 894-908. [CrossRef]
  • Feng W., Vynckier E., Froment G.F. (1993) Single-event kinetics of catalytic cracking, Ind. Eng. Chem. Res. 32, 12, 2997-3005. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Fontain E., Reitsam K. (1991) The Generation of Reaction Networks with RAIN. 1. The Reaction Generator, J. Chem. Inf. Comp. Sci. 31, 1, 96-101. [CrossRef] [MathSciNet]
  • Frenklach M. (1987) Modeling of large reaction systems, Complex chemical reaction systems, mathematical modelling and simulation Springer Series in Chemical Physics, pp. 2-16.
  • Froment G.F., Hosten L.H. (1981) Catalytic Kinetics: Modelling, in Catalysis: Science and Technology, Anderson J.R., Boudart M. (eds), Springer-Verlag, Berlin, 2, Chapter 3, pp. 97-170.
  • Froment G.F. (1991) Fundamental Kinetic Modeling of Complex Processes, in Chemical Reactions in complex systems: the Mobil Workshop, Sapre A.V., Krambeck F.J. (eds), New York, Van Nostrand Reinhold, pp. 77-100.
  • Froment G.F. (1999) Kinetic modeling of acid-catalyzed oil refining processes, Catal. Today 52 153-163. [CrossRef]
  • Froment G.F. (2005) Single Event Kinetic Modeling of Complex Catalytic Processes, Catal. Rev. 47, 83-124. [CrossRef]
  • Gates B.C., Katzer J.R., Schmit G.C.A. (1979) Chemistry of Catalytic Processes, McGraw-Hill Book Co., New York.
  • Gaffuri P., Faravelli T., Ranzi E., Cernansky N.P., Miller D., d’Anna A., Ciajolo A. (1997) Comprehensive kinetic model for the lowtemperature oxidation of hydrocarbons, AIChE J. 43, 5, 1278-1286. [CrossRef]
  • Gauthier P. (2004) Modèle cinétique regroupé, basé sur la generation du réseau d’étapes élémentaires, du reformage catalytique régénératif, PhD Thesis, Université de Poitiers.
  • Glaude P.A., Warth V., Fournet R., Battin-Leclerc F., Côme G.M., Scacchi G. (1997) Modelling of n-heptane and iso-octane gas phase oxidation at low temperature by using computer-aided designed mechanisms, B. Soc. Chim. Belg. 106, 6, 343-348.
  • Glaude P.A., Warth V., Fournet R., Battin-Leclerc F., Come G.M., Scacchi G. (1998) Modelling of the oxidation of n-octane and ndecane using an automatic generation of mechanisms, Int. J. Chem. Kinet. 30, 949-959. [CrossRef]
  • Green W.H., Barton P.I., Bhattacharjee B., Matheu D.M., Schwer D.A., Song J., Sumathi R., Carstensen H.H., Dean A.M., Grenda J.M. (2001) Computer Construction of Detailed Chemical Kinetic Models for Gas-Phase Reactors, Ind. Eng. Chem. Res. 40, 23, 5362- 5370. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Grenda J.M., Androulakis I.P., Dean A.M., Green W.H. (2003) Application of Computational Kinetic Mechanism Generation to Model the Autocatalytic Pyrolysis of Methane, Ind. Eng. Chem. Res. 42, 1000-1010. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Guillaume D., Surla K., Galtier P. (2003) From Single Events theory to molecular kinetics - application to industrial process modeling, Chem. Eng. Sci. 58, 21, 4861-4869. [CrossRef]
  • Hillewaert L.P., Dierickx J.L., Froment G.F. (1988) Computer generation of reaction schemes and rate equations for thermal cracking, AIChE J. 34, 1, 17-24. [CrossRef]
  • Himmelblau D.M. (1970) Process Analysis by Statistical Methods J. Wiley and Sons, New York.
  • Hou G., Klein M.T. (1999) Molecular modeling of gas oil hydrodesulfurization, Abstracts of Papers of the American Chemical Society 218, U610-U611.
  • Iyer S.D., Joshi P.V., Klein M.T. (1998) Automated model building and modeling of alcohol oxidation in high temperature water, Environ. Prog. 17, 4, 221-233. [CrossRef]
  • Ihlenfeldt W.D., Gasteiger J. (1996) Computer-Assisted Planning of Organic Syntheses: The Second Generation of Programs, Angew. Chem. (International Edition in English) 34, 23-24, 2613-2633. [CrossRef]
  • Jaffe S.B., Freund H., Olmstead W.N. (2005) Extension of Structure-Oriented Lumping to Vacuum Residua, Ind. Eng. Chem. Res. 44, 26, 9840-9852. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Joshi P.V., Iyer S.D., Klein M.T. (1997) Computer assisted modeling of gas oil fluid catalytic cracking (FCC), Abstracts of Papers of the American Chemical Society 214, 80-81.
  • Joshi P.V., Iyer S.D., Klein M.T. (1998) Automated kinetic modelling of gas oil catalytic cracking, Rev. Process Chem. Engin. 1, 2, 110-140.
  • Joshi P.V., Klein M.T., Huebner A.L., Leycrle R.W. (1999) Automated kinetic modelling of catalytic reforming at the reaction pathways level, Rev. Process Chem. Engin. 2, 3, 169-193.
  • Katare S., Caruthers J.M., Delgass W.N., Venkatasubramanian V. (2004) An Intelligent System for Reaction Kinetic Modeling and Catalyst Design, Ind. Eng. Chem. Res. 43, 3484-3512. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Kittrell J.R. (1970) Mathematical Modeling of Chemical Reactions, Adv. Chem. Eng. 8, 97-183. [CrossRef]
  • Klein M.T., Hou G., Quann R.J., Wei W., Liao K.H., Yang R.S.H., Campain J.A., Mazurek M.A., Broadbelt L.J. (2002) BioMol: Computer-Assisted Biological Modeling of Complex Chemical Mixtures and Biological Processes at the Molecular Level, Environ. Health Persp. 110, 6, 1025-1029. [CrossRef]
  • Klein M.T., Hou G., Bertolacini R.J.., Broadbelt L.J., Kumar A. (2006) Molecular Modeling in Heavy Hydrocarbon Conversions CRC Press, Taylor & Francis Group, Boca Raton, FL (USA).
  • Klinke D.J., Broadbelt L.J. (1999) Construction of a Mechanistic Model of Fischer-Tropsch Synthesis on Ni(111) and Co(0001) Surfaces, Chem. Eng. Sci. 54, 15-16, 3379-3389. [CrossRef]
  • Kmak W.S. (1971) A Kinetic Simulation Model of the Powerforming Process, Paper presented at the AIChE National Meeting, Houston, Texas, March, 3, paper 42b.
  • Kmak W.S., Stuckey A.N. (1973) Powerforming Process Studies with a Kinetic Simulation Model, Paper presented at the AIChE National Meeting, New Orleans, Louisiana, March, 14, paper 56a.
  • Kruse T.M., Woo O.S., Broadbelt L.J. (2001) Detailed mechanistic modeling of polymer degradation: application to polystyrene, Chem. Eng. Sci. 56, 3, 971-979. [CrossRef]
  • Kruse T.M., Woo O.S., Wong H.W., Kahn S.S., Broadbelt L.J. (2002) Mechanistic Modeling of Polymer Degradation: A Comprehensive Study of Polystyrene, Macromolecules 35, 20, 7830-7844. [CrossRef]
  • Kruse T.M., Wong H.W., Broadbelt L.J. (2003) Mechanistic Modeling of Polymer Pyrolysis: Polypropylene, Macromolecules 36, 25, 9594-9607. [CrossRef]
  • Kumar H., Froment G.F. (2007a) A generalized mechanistic kinetic model for the hydroisomerization and hydrocracking of long-chain paraffins, Ind. Eng. Chem. Res. 46, 12, 4075-4090. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Kumar H., Froment G.F. (2007b) Mechanistic Kinetic Modeling of the Hydrocracking of Complex Feedstocks, such as Vacuum Gas Oils, Ind. Eng. Chem. Res. 46, 18, 5881-5897. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • LaxmiNarasimhan C.S., Thybaut J.W., Marin G.B., Jacobs P.A., Martens J.A., Denayer J.F., Baron G.V. (2003) Kinetic modeling of pore mouth catalysis in the hydroconversion of n-octane on Pt-HZSM- 22, J. Catal. 220, 2, 399-413. [CrossRef]
  • Laxmi Narasimhan C.S., Thybaut J.W., Marin G.B., Denayer J.F., Baron G.V., Martens J.A., Jacobs P.A. (2004) Relumped singleevent microkinetic model for alkane hydrocracking on shape-selective catalysts: catalysis on ZSM-22 pore mouths, bridge acid sites and micropores, Chem. Eng. Sci. 59, 22-23, 4765-4772. [CrossRef]
  • Levenberg K. (1944) A Method for the Solution of Certain Problems in Least Squares, Quart. Appl. Math. 2 2, 164-168. [CrossRef] [MathSciNet]
  • Levine S.E., Broadbelt L.J. (2009) Detailed mechanistic modeling of high-density polyethylene pyrolysis: Low molecular weight product evolution, Polym. Degrad. Stab. 94, 5, 810-822. [CrossRef]
  • Lozano-Blanco G., Thybaut J.W., Surla K., Galtier P., Marin G.B. (2006) Fischer-Tropsch Synthesis: Development of a Microkinetic Model for Metal Catalysis, Oil Gas Sci. Technology – Rev. IFP 61 4, 489-496. [CrossRef] [EDP Sciences]
  • Lozano-Blanco G., Thybaut J.W., Surla K., Galtier P., Marin G.B. (2008) Single-Event Microkinetic Model for Fischer-Tropsch Synthesis on Iron-Based Catalysts, Ind. Eng. Chem. Res. 47, 16, 5879-5891. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Maire G.L.C., Garin F.G. (1984) Metal Catalyzed Skeletal Reactions of Hydrocarbons, in Catalysis: Science and Technology Anderson J.R., Boudart M. (eds), Springer-Verlag, Berlin, 6, Chapter 3, pp. 162-226.
  • Marcilly C. (2003) Catalyse acido-basique. Volume 1 – Volume 2 Editions Technip, Paris.
  • Marin G.B., Froment G.F. (1982) Reforming of C6-Hydrocarbons on a Pt/Al2O3 Catalyst, Chem. Eng. Sci. 37, 5, 759-773. [CrossRef]
  • Marin G.B., Froment G.F., Lerou J.J., De Backer W. (1983) Simulation of a Catalytic Naphtha Reforming Unit, Proc. 3rd Int. Congress on Computers and Chemical Engineering, E.F.C.E. Publication Series No. 27, Vol. II, C117/1 - C117/7, Paris.
  • Marin G.B., Froment G.F. (1990) The Development and Use of Rate Equations for Catalytic Refinery Processes, Proc. 1st Kuwait Conference on Hydrotreating Processes, Kuwait, 1989, March 5-9, published in Catalysts in Petroleum Refining 1989, Trimm D.L. et al. (eds), Elsevier Science Publishers B.V., Amsterdam, pp. 497-511.
  • Marquardt D. (1963) An Algorithm for Least-Squares Estimation of Nonlinear Parameters, J. Soc. Ind. Appl. Math. 11, 2, 431-441. [CrossRef] [MathSciNet]
  • Martens G.G., Froment G.F. (1999) Kinetic modeling of paraffins hydrocracking based upon elementary steps and the single event concept, in Reaction kinetics and the development of catalytic processes, Froment G.F., Waugh K.C. (eds), Elsevier Science BV, Stud. Surf. Sci. Catal. 122, 333-340
  • Martens G.G., Marin G.B., Martens J.A., Jacobs P.A., Baron G.V. (2000) A fundamental kinetic model for hydrocracking of C8 to C12 alkanes on Pt/US-Y zeolites, J. Catal. 195, 2, 253-267. [CrossRef]
  • Martens G.G., Thybaut J.W., Marin G.B. (2001) Single event rate parameters for hydrocracking of cycloalkanes on Pt/US-Y zeolites, Ind. Eng. Chem. Res. 40, 8, 1832-1844. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Martinis J.M., Froment G.F. (2006) Alkylation on Solid Acids. Part 2. Single-Event Kinetic Modeling, Ind. Eng. Chem. Res. 45, 954-967. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Martino G. (1998) Le raffinage du pétrole. 3. Procédés de transformation Leprince P. (ed), Editions Technip, Paris, France, Chap. 4, pp. 105-173.
  • Matheu D.M., Lada T.A., Green W.H., Dean A.M., Grenda J.M. (2001) Rate-based screening of pressure-dependent reaction networks, Comput. Phys. Commun. 138, 3, 237-249. [CrossRef]
  • Matheu D.M., Dean A.M., Grenda J.M., Green W.H. (2003) Mechanism Generation with Integrated Pressure dependence: A New Model for Methane Pyrolysis, J. Phys. Chem. A 107, 8552- 8565. [CrossRef]
  • Mills G.A., Heinemann H., Milliken T.H., Oblad A.G. (1953) Houdriforming reactions: Catalytic Mechanism, Ind. Eng. Chem. 45, 1, 134-137. [CrossRef]
  • Mitsios M., Guillaume D., Galtier P., Schweich D. (2009) Single- Event Microkinetic Model for Long-Chain Paraffin Hydrocracking and Hydroisomerization on an Amorphous Pt/SiO2-Al2O3 Catalyst, Ind. Eng. Chem. Res. 48, 3284-3292. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Mizan T.I., Klein M.T. (1999) Computer-assisted mechanistic modeling of n-hexadecane hydroisomerization over various bifunctional catalysts, Catal. Today 50, 1, 159-172 [CrossRef]
  • Moustafa T., Froment G.F. (2003) Kinetic Modeling of Coke Formation and Deactivation in the Catalytic Cracking of Vacuum Gas Oil, Ind. Eng. Chem. Res. 42, 1, 14-25. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Németh A., Vidóczy T., Héberger K., Kúti Z., Wágner J. (2002) MECHGEN: Computer Aided Generation and Reduction of Reaction Mechanisms, J. Chem. Inf. Comput. Sci. 42, 2, 208-214. [CrossRef] [PubMed]
  • Olah G.A., Prakash G.K.S., Sommer J. (1985) Superacids, New York.
  • Park T.-Y., Froment G.F. (2001) Kinetic Modeling of the MTO Process – I. Model Formulation, Ind. Eng. Chem. Res. 40, 20, 4172-4186. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Park T.-Y., Froment GF (2004) Analysis of fundamental reaction rates in the methanol-to-olefins process on ZSM-5 as a basis for reactor design and operation, Ind. Eng. Chem. Res. 43, 3, 682-689. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Pfaendtner J., Broadbelt L.J. (2008a) Mechanistic Modeling of Lubricant Degradation. 1. Structure – Reactivity Relationships for Free-Radical Oxidation, Ind. Eng. Chem. Res. 47, 9, 2886-2896. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Pfaendtner J., Broadbelt L.J. (2008b) Mechanistic Modeling of Lubricant Degradation. 2. The Autoxidation of Decane and Octane, Ind. Eng. Chem. Res. 47, 9, 2897-2904 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Prickett S.E., Mavrovouniotis M.L. (1997a) Construction of Complex Reaction Systems – I. Reaction description language, Comput. Chem. Eng. 21, 11, 1219-1235. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Prickett S.E., Mavrovouniotis M.L., (1997b) Construction of Complex Reaction Systems – II. Molecule manipulation and reaction application algorithms, Comput. Chem. Eng. 21, 11, 1237- 1254. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Prickett S.E., Mavrovouniotis M.L. (1997c) Construction of Complex Reaction Systems – III. An example: alkylation of olefins, Comput. Chem. Eng. 21, 12, 1325-1337. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Quann R.J., Jaffe S.B. (1992) Structure-oriented lumping: describing the chemistry of complex hydrocarbon mixtures, Ind. Eng. Chem. Res. 31, 11, 2483-2497. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Quann R.J., Jaffe S.B. (1996) Building useful models of complex reaction systems in petroleum refining, Chem. Eng. Sci. 51, 10, 1615-1635. [CrossRef]
  • Quann R.J. (1998) Modeling the Chemistry of Complex Petroleum Mixtures, Environ. Health Persp. 106, 6, 1441-1448. [CrossRef] [PubMed]
  • Quintana-Solórzano R., Thybaut J.W., Marin G.B., Lodeng R., Holmen A. (2005) Single-Event MicroKinetics for coke formation in catalytic cracking, Catal. Today 107, 8, 619-629. [CrossRef]
  • Quintana-Solórzano R., Thybaut J.W., Marin G.B. (2007a) A single- event microkinetic analysis of the catalytic cracking of (cyclo)alkanes on an equilibrium catalyst in the absence of coke formation, Chem. Eng. Sci. 62, 18-20, 5033-5038. [CrossRef]
  • Quintana-Solórzano R., Thybaut J.W., Galtier P., Marin G.B. (2007b) Single-Event MicroKinetics for coke formation during the catalytic cracking of (cyclo)alkane/1-octene mixtures, Catal. Today 127, 1, 17-30. [CrossRef]
  • Ramage M.P., Graziani K.R., Krambeck F.J. (1980) Development of Mobil’s Reforming Model, Chem. Eng. Sci. 35 1, 41-48 [CrossRef]
  • Ramage M.P., Graziani K.R., Schipper P.H., Krambeck F.J., Choi B.C. (1987) KINPtR (Mobil’s Kinetic Reforming Model): A Review of Mobil’s Industrial Process Modeling Philosophy, in Adv. Chem. Eng., Wei J., Anderson J.L., Bischoff K.B., Denn M.M., Seinfeld J.H. (eds), Academic Press, Orlando, 13, 193-266
  • Ranzi E., Faravelli T., Gaffuri P., Sogaro A. (1995) Low Temperature Combustion – Automatic-Generation of Oxidation Reactions and Lumping procedures, Combust. Flame 102, 179-192. [CrossRef]
  • Ratkiewicz A., Truong T.N. (2003) Application of Chemical Graph Theory for Automated Mechanism Generation, J. Chem. Inf. Comput. Sci. 43, 36-44. [CrossRef] [PubMed]
  • Ratkiewicz A., Truong T.N. (2006) Automated mechanism generation: From symbolic calculation to complex chemistry, Int. J. Quantum Chem. 106, 1, 244-255. [CrossRef]
  • Sapre A.V. (1991) Kinetic Modelling at Mobil: A Historical Perspective, in Chemical Reactions in Complex Mixtures: the Mobil Workshop, Sapre A.V., Krambeck F.J. (eds), Van Nostrand Reinhold, New York, Chap. 12, pp. 222-253.
  • Schipper P.H., Graziani K.R., Choi B.C., Ramage M.P. (1984) The Extension of Mobil’s Kinetic Reforming Model to include Catalyst Deactivation, Int. Chem. Eng. Symp. Ser. 87, 33-44.
  • Sinfelt J.H., Hurwitz H., Rohrer J.C. (1960) Kinetics of n-Pentane Isomerization over Pt/Al2O3 Catalyst, J. Phys. Chem. 64, 892-894. [CrossRef]
  • Sinfelt J.H., Hurwitz H., Rohrer J.C. (1962) Role of Dehydrogenation Activity in Catalytic Isomerization and Dehydrocyclization of Hydrocarbons, J. Catal. 1, 481-483. [CrossRef]
  • Sinfelt J.H. (1981) Catalytic Reforming of Hydrocarbons, in Catalysis: Science and Technology, Anderson J.R., Boudart M. (eds), Springer-Verlag, Berlin, Vol. 1, Chap. 5, pp. 257-300.
  • Sinfelt J.H. (1997) Handbook of Heterogeneous Catalysis, Part B: Catalytic Processes, Ertl G., Knozinger H., Weitkamp J. (eds), Wiley-VCH, Weinheim, Germany, Vol. 4, pp. 1939-1954.
  • Song J., Raman S., Yu J., Wijaya C.D., Stephanopoulos G., Green W.H. (2003) Development of Automatic Chemical Reaction Mechanism Generation Software Using Object-Oriented Technology, Prepr. Pap. - Am. Chem. Soc., Div. Fuel Chem. 48, 2, 516-517.
  • Sotelo-Boyas R., Froment G.F. (2009) Fundamental Kinetic Modeling of Catalytic Reforming, Ind. Eng. Chem. Res. 48, 3, 1107-1119 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Souverijns W., Parton R., Martens J.A., Froment G.F., Jacobs P.A. (1996) Mechanism of the paring reaction of naphtenes, Catal. Lett. 37, 3-4, 207-212. [CrossRef]
  • Sterba M.J., Haensel V. (1976) Catalytic Reforming, Ind. Eng. Chem. Prod. Res. Dev. 15, 1, 2-17 [CrossRef]
  • Sullivan R.F., Egan C.J., Langlois G.E., Sieg R.P. (1961) A New Reaction That Occurs in the Hydrocracking of Certain Aromatic Hydrocarbons, J. Am. Chem. Soc. 83, 5, 1156-1160. [CrossRef]
  • Surla K., Guillaume D., Verstraete J.J., Galtier P. (2011) Single Event Kinetic Modeling: application to isomerization of light paraffins, Oil Gas Sci. Technol., 66, 343-365. [CrossRef] [EDP Sciences]
  • Susnow R.G., Dean A.M., Green W.H., Peczak P., Broadbelt L.J. (1997) Rate-Based Construction of Kinetic Models for Complex Systems, J. Phys. Chem. A 101, 20, 3731-3740. [CrossRef]
  • Svoboda G.D., Vynckier E., Debrabandere B., Froment G.F. (1995) Single-Event Rate Parameters for Paraffin Hydrocracking on a Pt/US-Y Zeolite, Ind. Eng. Chem. Res. 34, 11, 3793-3800. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Temkin O.N., Zeigarnik A.V., Kuz’min A.E., Bruk L.G., Slivinskii E.V. (2002) Construction of the reaction networks for heterogeneous catalytic reactions: Fischer-Tropsch synthesis and related reactions, Russ. Chem. Bull. Int. Ed. 51, 1, 1-36. [CrossRef]
  • Thybaut J.W., Marin G.B. (2003) Kinetic Modeling of the Conversion of Complex Hydrocarbon Feedstocks by Acid Catalysis, Chem. Eng. Technol. 26, 4, 509-514. [CrossRef]
  • Tomlin A.S., Turanyi T., Pilling M.J. (1997) Mathematical tools for the construction, investigation and reduction of combustion mechanisms, in Low-Temperature Combustion and Autoignition Pilling M.J. (ed) Elsevier, Amsterdam.
  • True W.R., Koottungal L. (2010) Global capacity growth slows, but Asian refineries bustle, Oil Gas J. 108, 46, 50-59.
  • Ugi I., Bauer J., Bley K., Dengler A., Dietz A., Fontain E., Gruber B., Herges R., Knauer M., Reitsam K., Stein N. (1993) Computer Assisted Solution of Chemical Problems - The Historical Development and the Present State of the Art of a New Discipline of Chemistry, Angew. Chem. Int. Ed. Engl. 32, 201-227. [CrossRef]
  • Van Geem K.M., Reyniers M.F., Marin G.B., Song J., Mattheu D.M., Green W.H. (2006) Automatic Network generation using RMG for Steam Cracking of n-Hexane, AIChE J. 52, 2, 718-730. [CrossRef]
  • Van Geem K.M., Reyniers M.F., Marin G.B. (2008) Challenges of Modeling Steam Cracking of Heavy Feedstocks, Oil Gas Sci. Technol. – Rev. IFP 63, 1, 79-94. [CrossRef] [EDP Sciences]
  • Van Trimpont P.A., Marin G.B., Froment G.F. (1985) Activities and Selectivities for Reforming Reactions on Unsulphided and Sulphided Commercial Platinum and Platinum-Rhenium Catalysts, Appl. Catal. 17, 1, 161-173. [CrossRef]
  • Van Trimpont P.A., Marin G.B., Froment G.F. (1986a) Kinetics of Methyl cyclohexane Dehydrogenation on Sulphided Commercial Pt/Al2O3 and Pt-Re/Al2O3 Catalysts, Ind. Eng. Chem. Fund. 25, 4, 544-553. [CrossRef]
  • Van Trimpont P.A., Marin G.B., Froment G.F. (1986b) Kinetics of the Reforming of C7-Hydrocarbons on a Commercial Pt-Re/Al2O3 Catalyst, Appl. Catal. 24, 1, 53-68 [CrossRef]
  • Van Trimpont P.A., Marin G.B., Froment G.F. (1988) Reforming of C7-Hydrocarbons on a Sulphided Commercial Pt/Al2O3 Catalyst, Ind. Eng. Chem. Res. 27, 1, 51-57. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Verstraete J. (1997) Kinetische Studie van de Katalytische Reforming van Nafta over een Pt-Sn/Al2O3 Katalysator, PhD Thesis, Universiteit Gent.
  • Vleduts G.E. (1963) Concerning One System of Classification and Codification of Organic Reactions, Inf. Storage Retr. 1, 117-146. [CrossRef]
  • Vynckier E., Froment G.F. (1991) Modeling of the kinetics of complex processes upon elementary steps, in Kinetic and thermodynamic lumping of multicomponent mixtures, Astarita G., Sandler S.I. (eds), Elsevier Science Publishers BV, Amsterdam, pp. 131-161.
  • Warth V., Battin-Leclerc F., Fournet R., Glaude P.A., Come G.M., Scacchi G. (2000) Computer based generation of reaction mechanisms for gas-phase oxidation, Comput. Chem. 24, 541-560. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Wei W., Bennett C.A., Tanaka R., Hou G., Klein M.T. (2008) Detailed kinetic models for catalytic reforming, Fuel Process. Technol. 89, 4, 344-349. [CrossRef]
  • Weitkamp J., Ernst S., Karge H.G. (1984) Peculiarities in the Conversion of Naphthenes on Bifunctional Catalysts, Erdöl und Kohle, Erdgas, Petrochemie vereinigt mit Brennstoff-Chemie 37 10, 457-462.
  • Willems P.A., Froment G.F. (1988a) Kinetic Modeling of the Thermal Cracking of Hydrocarbons. 1. Calculation of Frequency Factors, Ind. Eng. Chem. Res. 27, 11, 1959-1966. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Willems P.A., Froment G.F. (1988b) Kinetic Modeling of the Thermal Cracking of Hydrocarbons. 2. Calculation of Activation Energies, Ind. Eng. Chem. Res. 27, 11, 1966-1971. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Wong H.W., Li X., Swihart M.T., Broadbelt L.J. (2004) Detailed Kinetic Modeling of Silicon Nanoparticle Formation Chemistry via Automated Mechanism Generation, J. Phys. Chem. A 108, 46, 10122-10132. [CrossRef]
  • Zeigarnik A.V., Valdés-Pérez R.E., Temkin O.N., Bruk L.G., Shalgunov S.I. (1997) Computer-Aided Mechanism Elucidation of Acetylene Hydrocarboxylation to Acrylic Acid Based on a Novel Union of Empirical and Formal Methods, Organometallics 16, 14, 3114-3127. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.