Dossier: Chemical Reaction Modelling of Refining Processes
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Number 3, May-June 2011
Dossier: Chemical Reaction Modelling of Refining Processes
Page(s) 367 - 397
DOI https://doi.org/10.2516/ogst/2011122
Published online 05 August 2011
  • Al Wahabi S.M., Froment G.F. (2004) Single Event Kinetic Modeling of the Methanol-to-Olefins Process on SAPO-34, Ind. Eng. Chem. Res. 43, 17, 5098-5111. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Ancheyta-Juárez J., Villafuerte-Macías E., Diaz-García L., González-Arredondo E. (2001) Modeling and Simulation of Four Catalytic Reactors in Series for Naphtha Reforming, Energ. Fuel. 15, 4, 887-893. [CrossRef] [Google Scholar]
  • Baltanas M.A., Froment G.F. (1985) Computer generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins on Pt-containing bifunctional catalysts, Comp. Chem. Eng. 9, 1, 71-81. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Baltanas M.A., Van Raemdonck K.K., Froment G.F., Mohedas S.R. (1989) Fundamental kinetic modeling of hydroisomerization and hydrocracking on noble metal-loaded faujasites. 1. Rate parameters for hydroisomerization, Ind. Eng. Chem. Res. 28, 7, 899-910. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Battin-Leclerc F., Glaude P.A., Warth V., Fournet R., Scacchi G., Come G.M. (2000) Computer tools for modelling the chemical phenomena related to combustion, Chem. Eng. Sci. 55, 15, 2883-2893. [CrossRef] [Google Scholar]
  • Benson S.W., Cruickshank F.R., Golden D.M., Haugen G.R., O’Neal H.E., Rodgers A.S., Shaw R., Walsch R. (1969) Additivity rules for estimation of thermodynamical properties, Chem. Rev. 69 279-324. [CrossRef] [Google Scholar]
  • Benson S.W. (1976) Thermochemical Kinetics, 2nd Edition, John Wiley & Sons, New York. [Google Scholar]
  • Blurock E.S. (1995) Reaction: System for Modeling Chemical Reactions, J. Chem. Inf. Comput. Sci. 35, 3, 607-616. [CrossRef] [Google Scholar]
  • Bockhorn H. (1990) Mathematical modeling, in Ullmann’s Encyclopedia of Industrial Chemistry, 5th edition, Elvers B., Hawkins S., Schultz G., Hofmann H. (eds), VCH Verlagsgesellschaft mbH, Weinheim, B1, 2.1-2.102. [Google Scholar]
  • Broadbelt L.J., Stark S.M., Klein M.T. (1994) Computer-generated Pyrolysis Modeling – on-the-fly Generation of Species, Reactions, and Rates, Ind. Eng. Chem. Res. 33, 4, 790-799. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Broadbelt L.J., LaMarca C., Klein M.T., Dean B.D., Andrews S.M. (1995) Chemical Modeling Analysis of Poly(aryl ether sulfone) Thermal Stability through Computer-Generated Reaction Mechanisms, Ind. Eng. Chem. Res. 34, 12, 4212-4221. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Brouwer D.M. (1980) Reactions of alkylcarbenium ions in reaction to isomerization and cracking of hydrocarbons, in Chemistry and Chemical Engineering of Catalytic Processes GCAS, Prins R. (ed), Alphen aan de Rijn, The Netherlands, Sijthoff & Noordhoff. [Google Scholar]
  • Bruk L.G., Gorodskii S.N., Zeigarnik A.V., Valdés-Pérez R.E., Temkin O.N. (1998) Oxidative carbonylation of phenylacetylene catalyzed by Pd(II) and Cu(I): Experimental tests of forty-one computer- generated mechanistic hypotheses, J. Mol. Catal. A: Chem. 130, 1-2, 29-40. [CrossRef] [Google Scholar]
  • Buda F., Heyberger B., Fournet R., Glaude P.A., Warth V., Battin-Leclerc F. (2006) Modeling of the gas-phase oxidation of cyclohexane, Energ. Fuel. 20, 4, 1450-1459. [CrossRef] [Google Scholar]
  • Burch R., Garla L.C. (1981) Platinum-Tin Reforming Catalysts. II. Activity and Selectivity in Hydrocarbon Reactions, J. Catal. 71 360-372 [CrossRef] [Google Scholar]
  • Chavarría-Hernández J.C., Ramírez J., Gonzalez H., Baltanas M.A. (2004) Modelling of n-Hexadecane Hydroisomerization and Hydrocracking Reactions on a Mo/H Beta-Alumina Bi-Functional Catalyst Using the Single Event Concept, Catal. Today 98, 1-2, 235-242. [CrossRef] [Google Scholar]
  • Chavarria-Hernandez J.C., Ramirez J., Baltanas M.A. (2008) Single-event-lumped-parameter hybrid (SELPH) model for nonideal hydrocracking of n-octane, Catal. Today 130, 2-4, 455-461. [CrossRef] [Google Scholar]
  • Chevalier C., Warnatz J., Melenk H. (1990) Automatic Generation of Reaction Mechanisms for Description of Oxidation of Higher Hydrocarbons, Ber. Bunsenges. Phys. Chem. 94, 1362-1367. [Google Scholar]
  • Chevalier C., Pitz W.J., Warnatz J., Westbrook C.K., Melenk H. (1992) Hydrocarbon Ignition: Automatic Generation of Reaction Mechanisms and Applications to Modeling of Engine Shock, Proc. Combust. Inst. 24, 1362-1367. [Google Scholar]
  • Chinnick S.J., Baulch D.L., Ayscough P.B. (1988) An expert system for hydrocarbon pyrolysis reactions, Chemom. Intell. Lab. Syst. 5, 1, 39-52. [CrossRef] [Google Scholar]
  • Christensen G., Apelian M.R., Hickey K.J., Jaffe S.B. (1999) Future directions in modeling the FCC process: An emphasis on product quality, Chem. Eng. Sci. 54, 13-14, 2753-2764. [CrossRef] [Google Scholar]
  • Ciapetta F.C. (1961) Catalytic Reforming, Petro/Chem. Engr. 33, 5, C19-C31. [Google Scholar]
  • Ciapetta F.C., Wallace D.N. (1971) Catalytic Naphtha Reforming, Catal. Rev. 5, 67-158. [CrossRef] [Google Scholar]
  • Clymans P.J., Froment G.F. (1984) Computer generation of reaction paths and rate equations in the thermal cracking of normal and branched paraffins, Comput. Chem. Eng. 8, 2, 137-142. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Cochegrue H. (2001) Modelisation cinetique du reformage catalytique sur catalyseur Pt-Sn/Al2O3, PhD Thesis, Universite de Poitiers. [Google Scholar]
  • Davis B.H. (1999) Alkane dehydrocyclization mechanism, Catal. Today 53, 3, 443-516 [CrossRef] [Google Scholar]
  • Dente M., Pierucci S., Ranzi E., Bussani G. (1992) New improvements in modeling kinetic schemes for hydrocarbons pyrolysis reactors, Chem. Eng. Sci. 51, 2629-2634. [Google Scholar]
  • Dewachtere N.V., Santaella F., Froment G.F. (1999) Application of a single-event kinetic model in the simulation of an industrial riser reactor for the catalytic cracking of vacuum gas oil, Chem. Eng. Sci. 54, 15-16, 3653-3660. [CrossRef] [Google Scholar]
  • DeWitt M.J., Dooling D.J., Broadbelt L.J. (2000) Computer Generation of Reaction Mechanisms Using Quantitative Rate Information: Application to Long-Chain Hydrocarbon Pyrolysis, Ind. Eng. Chem. Res. 39, 7, 2228-2237. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • DiMaio F.P., Lignola P.G. (1992) KING, a Kinetic Network Generator, Chem. Eng. Sci. 47, 9-11, 2713-2718. [CrossRef] [Google Scholar]
  • Faulon J.L., Sault A.G. (2001) Stochastic Generator of Chemical Structure. 3. Reaction Network Generation, J. Chem. Inf. Comp. Sci. 41, 4, 894-908. [CrossRef] [Google Scholar]
  • Feng W., Vynckier E., Froment G.F. (1993) Single-event kinetics of catalytic cracking, Ind. Eng. Chem. Res. 32, 12, 2997-3005. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Fontain E., Reitsam K. (1991) The Generation of Reaction Networks with RAIN. 1. The Reaction Generator, J. Chem. Inf. Comp. Sci. 31, 1, 96-101. [CrossRef] [MathSciNet] [Google Scholar]
  • Frenklach M. (1987) Modeling of large reaction systems, Complex chemical reaction systems, mathematical modelling and simulation Springer Series in Chemical Physics, pp. 2-16. [Google Scholar]
  • Froment G.F., Hosten L.H. (1981) Catalytic Kinetics: Modelling, in Catalysis: Science and Technology, Anderson J.R., Boudart M. (eds), Springer-Verlag, Berlin, 2, Chapter 3, pp. 97-170. [Google Scholar]
  • Froment G.F. (1991) Fundamental Kinetic Modeling of Complex Processes, in Chemical Reactions in complex systems: the Mobil Workshop, Sapre A.V., Krambeck F.J. (eds), New York, Van Nostrand Reinhold, pp. 77-100. [Google Scholar]
  • Froment G.F. (1999) Kinetic modeling of acid-catalyzed oil refining processes, Catal. Today 52 153-163. [CrossRef] [Google Scholar]
  • Froment G.F. (2005) Single Event Kinetic Modeling of Complex Catalytic Processes, Catal. Rev. 47, 83-124. [CrossRef] [Google Scholar]
  • Gates B.C., Katzer J.R., Schmit G.C.A. (1979) Chemistry of Catalytic Processes, McGraw-Hill Book Co., New York. [Google Scholar]
  • Gaffuri P., Faravelli T., Ranzi E., Cernansky N.P., Miller D., d’Anna A., Ciajolo A. (1997) Comprehensive kinetic model for the lowtemperature oxidation of hydrocarbons, AIChE J. 43, 5, 1278-1286. [CrossRef] [Google Scholar]
  • Gauthier P. (2004) Modèle cinétique regroupé, basé sur la generation du réseau d’étapes élémentaires, du reformage catalytique régénératif, PhD Thesis, Université de Poitiers. [Google Scholar]
  • Glaude P.A., Warth V., Fournet R., Battin-Leclerc F., Côme G.M., Scacchi G. (1997) Modelling of n-heptane and iso-octane gas phase oxidation at low temperature by using computer-aided designed mechanisms, B. Soc. Chim. Belg. 106, 6, 343-348. [Google Scholar]
  • Glaude P.A., Warth V., Fournet R., Battin-Leclerc F., Come G.M., Scacchi G. (1998) Modelling of the oxidation of n-octane and ndecane using an automatic generation of mechanisms, Int. J. Chem. Kinet. 30, 949-959. [CrossRef] [Google Scholar]
  • Green W.H., Barton P.I., Bhattacharjee B., Matheu D.M., Schwer D.A., Song J., Sumathi R., Carstensen H.H., Dean A.M., Grenda J.M. (2001) Computer Construction of Detailed Chemical Kinetic Models for Gas-Phase Reactors, Ind. Eng. Chem. Res. 40, 23, 5362- 5370. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Grenda J.M., Androulakis I.P., Dean A.M., Green W.H. (2003) Application of Computational Kinetic Mechanism Generation to Model the Autocatalytic Pyrolysis of Methane, Ind. Eng. Chem. Res. 42, 1000-1010. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Guillaume D., Surla K., Galtier P. (2003) From Single Events theory to molecular kinetics - application to industrial process modeling, Chem. Eng. Sci. 58, 21, 4861-4869. [CrossRef] [Google Scholar]
  • Hillewaert L.P., Dierickx J.L., Froment G.F. (1988) Computer generation of reaction schemes and rate equations for thermal cracking, AIChE J. 34, 1, 17-24. [CrossRef] [Google Scholar]
  • Himmelblau D.M. (1970) Process Analysis by Statistical Methods J. Wiley and Sons, New York. [Google Scholar]
  • Hou G., Klein M.T. (1999) Molecular modeling of gas oil hydrodesulfurization, Abstracts of Papers of the American Chemical Society 218, U610-U611. [Google Scholar]
  • Iyer S.D., Joshi P.V., Klein M.T. (1998) Automated model building and modeling of alcohol oxidation in high temperature water, Environ. Prog. 17, 4, 221-233. [CrossRef] [Google Scholar]
  • Ihlenfeldt W.D., Gasteiger J. (1996) Computer-Assisted Planning of Organic Syntheses: The Second Generation of Programs, Angew. Chem. (International Edition in English) 34, 23-24, 2613-2633. [CrossRef] [Google Scholar]
  • Jaffe S.B., Freund H., Olmstead W.N. (2005) Extension of Structure-Oriented Lumping to Vacuum Residua, Ind. Eng. Chem. Res. 44, 26, 9840-9852. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Joshi P.V., Iyer S.D., Klein M.T. (1997) Computer assisted modeling of gas oil fluid catalytic cracking (FCC), Abstracts of Papers of the American Chemical Society 214, 80-81. [Google Scholar]
  • Joshi P.V., Iyer S.D., Klein M.T. (1998) Automated kinetic modelling of gas oil catalytic cracking, Rev. Process Chem. Engin. 1, 2, 110-140. [Google Scholar]
  • Joshi P.V., Klein M.T., Huebner A.L., Leycrle R.W. (1999) Automated kinetic modelling of catalytic reforming at the reaction pathways level, Rev. Process Chem. Engin. 2, 3, 169-193. [Google Scholar]
  • Katare S., Caruthers J.M., Delgass W.N., Venkatasubramanian V. (2004) An Intelligent System for Reaction Kinetic Modeling and Catalyst Design, Ind. Eng. Chem. Res. 43, 3484-3512. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Kittrell J.R. (1970) Mathematical Modeling of Chemical Reactions, Adv. Chem. Eng. 8, 97-183. [CrossRef] [Google Scholar]
  • Klein M.T., Hou G., Quann R.J., Wei W., Liao K.H., Yang R.S.H., Campain J.A., Mazurek M.A., Broadbelt L.J. (2002) BioMol: Computer-Assisted Biological Modeling of Complex Chemical Mixtures and Biological Processes at the Molecular Level, Environ. Health Persp. 110, 6, 1025-1029. [CrossRef] [Google Scholar]
  • Klein M.T., Hou G., Bertolacini R.J.., Broadbelt L.J., Kumar A. (2006) Molecular Modeling in Heavy Hydrocarbon Conversions CRC Press, Taylor & Francis Group, Boca Raton, FL (USA). [Google Scholar]
  • Klinke D.J., Broadbelt L.J. (1999) Construction of a Mechanistic Model of Fischer-Tropsch Synthesis on Ni(111) and Co(0001) Surfaces, Chem. Eng. Sci. 54, 15-16, 3379-3389. [CrossRef] [Google Scholar]
  • Kmak W.S. (1971) A Kinetic Simulation Model of the Powerforming Process, Paper presented at the AIChE National Meeting, Houston, Texas, March, 3, paper 42b. [Google Scholar]
  • Kmak W.S., Stuckey A.N. (1973) Powerforming Process Studies with a Kinetic Simulation Model, Paper presented at the AIChE National Meeting, New Orleans, Louisiana, March, 14, paper 56a. [Google Scholar]
  • Kruse T.M., Woo O.S., Broadbelt L.J. (2001) Detailed mechanistic modeling of polymer degradation: application to polystyrene, Chem. Eng. Sci. 56, 3, 971-979. [CrossRef] [Google Scholar]
  • Kruse T.M., Woo O.S., Wong H.W., Kahn S.S., Broadbelt L.J. (2002) Mechanistic Modeling of Polymer Degradation: A Comprehensive Study of Polystyrene, Macromolecules 35, 20, 7830-7844. [CrossRef] [Google Scholar]
  • Kruse T.M., Wong H.W., Broadbelt L.J. (2003) Mechanistic Modeling of Polymer Pyrolysis: Polypropylene, Macromolecules 36, 25, 9594-9607. [CrossRef] [Google Scholar]
  • Kumar H., Froment G.F. (2007a) A generalized mechanistic kinetic model for the hydroisomerization and hydrocracking of long-chain paraffins, Ind. Eng. Chem. Res. 46, 12, 4075-4090. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Kumar H., Froment G.F. (2007b) Mechanistic Kinetic Modeling of the Hydrocracking of Complex Feedstocks, such as Vacuum Gas Oils, Ind. Eng. Chem. Res. 46, 18, 5881-5897. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • LaxmiNarasimhan C.S., Thybaut J.W., Marin G.B., Jacobs P.A., Martens J.A., Denayer J.F., Baron G.V. (2003) Kinetic modeling of pore mouth catalysis in the hydroconversion of n-octane on Pt-HZSM- 22, J. Catal. 220, 2, 399-413. [CrossRef] [Google Scholar]
  • Laxmi Narasimhan C.S., Thybaut J.W., Marin G.B., Denayer J.F., Baron G.V., Martens J.A., Jacobs P.A. (2004) Relumped singleevent microkinetic model for alkane hydrocracking on shape-selective catalysts: catalysis on ZSM-22 pore mouths, bridge acid sites and micropores, Chem. Eng. Sci. 59, 22-23, 4765-4772. [CrossRef] [Google Scholar]
  • Levenberg K. (1944) A Method for the Solution of Certain Problems in Least Squares, Quart. Appl. Math. 2 2, 164-168. [CrossRef] [MathSciNet] [Google Scholar]
  • Levine S.E., Broadbelt L.J. (2009) Detailed mechanistic modeling of high-density polyethylene pyrolysis: Low molecular weight product evolution, Polym. Degrad. Stab. 94, 5, 810-822. [CrossRef] [Google Scholar]
  • Lozano-Blanco G., Thybaut J.W., Surla K., Galtier P., Marin G.B. (2006) Fischer-Tropsch Synthesis: Development of a Microkinetic Model for Metal Catalysis, Oil Gas Sci. Technology – Rev. IFP 61 4, 489-496. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lozano-Blanco G., Thybaut J.W., Surla K., Galtier P., Marin G.B. (2008) Single-Event Microkinetic Model for Fischer-Tropsch Synthesis on Iron-Based Catalysts, Ind. Eng. Chem. Res. 47, 16, 5879-5891. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Maire G.L.C., Garin F.G. (1984) Metal Catalyzed Skeletal Reactions of Hydrocarbons, in Catalysis: Science and Technology Anderson J.R., Boudart M. (eds), Springer-Verlag, Berlin, 6, Chapter 3, pp. 162-226. [Google Scholar]
  • Marcilly C. (2003) Catalyse acido-basique. Volume 1 – Volume 2 Editions Technip, Paris. [Google Scholar]
  • Marin G.B., Froment G.F. (1982) Reforming of C6-Hydrocarbons on a Pt/Al2O3 Catalyst, Chem. Eng. Sci. 37, 5, 759-773. [CrossRef] [Google Scholar]
  • Marin G.B., Froment G.F., Lerou J.J., De Backer W. (1983) Simulation of a Catalytic Naphtha Reforming Unit, Proc. 3rd Int. Congress on Computers and Chemical Engineering, E.F.C.E. Publication Series No. 27, Vol. II, C117/1 - C117/7, Paris. [Google Scholar]
  • Marin G.B., Froment G.F. (1990) The Development and Use of Rate Equations for Catalytic Refinery Processes, Proc. 1st Kuwait Conference on Hydrotreating Processes, Kuwait, 1989, March 5-9, published in Catalysts in Petroleum Refining 1989, Trimm D.L. et al. (eds), Elsevier Science Publishers B.V., Amsterdam, pp. 497-511. [Google Scholar]
  • Marquardt D. (1963) An Algorithm for Least-Squares Estimation of Nonlinear Parameters, J. Soc. Ind. Appl. Math. 11, 2, 431-441. [CrossRef] [MathSciNet] [Google Scholar]
  • Martens G.G., Froment G.F. (1999) Kinetic modeling of paraffins hydrocracking based upon elementary steps and the single event concept, in Reaction kinetics and the development of catalytic processes, Froment G.F., Waugh K.C. (eds), Elsevier Science BV, Stud. Surf. Sci. Catal. 122, 333-340 [Google Scholar]
  • Martens G.G., Marin G.B., Martens J.A., Jacobs P.A., Baron G.V. (2000) A fundamental kinetic model for hydrocracking of C8 to C12 alkanes on Pt/US-Y zeolites, J. Catal. 195, 2, 253-267. [CrossRef] [Google Scholar]
  • Martens G.G., Thybaut J.W., Marin G.B. (2001) Single event rate parameters for hydrocracking of cycloalkanes on Pt/US-Y zeolites, Ind. Eng. Chem. Res. 40, 8, 1832-1844. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Martinis J.M., Froment G.F. (2006) Alkylation on Solid Acids. Part 2. Single-Event Kinetic Modeling, Ind. Eng. Chem. Res. 45, 954-967. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Martino G. (1998) Le raffinage du pétrole. 3. Procédés de transformation Leprince P. (ed), Editions Technip, Paris, France, Chap. 4, pp. 105-173. [Google Scholar]
  • Matheu D.M., Lada T.A., Green W.H., Dean A.M., Grenda J.M. (2001) Rate-based screening of pressure-dependent reaction networks, Comput. Phys. Commun. 138, 3, 237-249. [CrossRef] [Google Scholar]
  • Matheu D.M., Dean A.M., Grenda J.M., Green W.H. (2003) Mechanism Generation with Integrated Pressure dependence: A New Model for Methane Pyrolysis, J. Phys. Chem. A 107, 8552- 8565. [CrossRef] [Google Scholar]
  • Mills G.A., Heinemann H., Milliken T.H., Oblad A.G. (1953) Houdriforming reactions: Catalytic Mechanism, Ind. Eng. Chem. 45, 1, 134-137. [CrossRef] [Google Scholar]
  • Mitsios M., Guillaume D., Galtier P., Schweich D. (2009) Single- Event Microkinetic Model for Long-Chain Paraffin Hydrocracking and Hydroisomerization on an Amorphous Pt/SiO2-Al2O3 Catalyst, Ind. Eng. Chem. Res. 48, 3284-3292. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Mizan T.I., Klein M.T. (1999) Computer-assisted mechanistic modeling of n-hexadecane hydroisomerization over various bifunctional catalysts, Catal. Today 50, 1, 159-172 [CrossRef] [Google Scholar]
  • Moustafa T., Froment G.F. (2003) Kinetic Modeling of Coke Formation and Deactivation in the Catalytic Cracking of Vacuum Gas Oil, Ind. Eng. Chem. Res. 42, 1, 14-25. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Németh A., Vidóczy T., Héberger K., Kúti Z., Wágner J. (2002) MECHGEN: Computer Aided Generation and Reduction of Reaction Mechanisms, J. Chem. Inf. Comput. Sci. 42, 2, 208-214. [CrossRef] [PubMed] [Google Scholar]
  • Olah G.A., Prakash G.K.S., Sommer J. (1985) Superacids, New York. [Google Scholar]
  • Park T.-Y., Froment G.F. (2001) Kinetic Modeling of the MTO Process – I. Model Formulation, Ind. Eng. Chem. Res. 40, 20, 4172-4186. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Park T.-Y., Froment GF (2004) Analysis of fundamental reaction rates in the methanol-to-olefins process on ZSM-5 as a basis for reactor design and operation, Ind. Eng. Chem. Res. 43, 3, 682-689. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Pfaendtner J., Broadbelt L.J. (2008a) Mechanistic Modeling of Lubricant Degradation. 1. Structure – Reactivity Relationships for Free-Radical Oxidation, Ind. Eng. Chem. Res. 47, 9, 2886-2896. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Pfaendtner J., Broadbelt L.J. (2008b) Mechanistic Modeling of Lubricant Degradation. 2. The Autoxidation of Decane and Octane, Ind. Eng. Chem. Res. 47, 9, 2897-2904 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Prickett S.E., Mavrovouniotis M.L. (1997a) Construction of Complex Reaction Systems – I. Reaction description language, Comput. Chem. Eng. 21, 11, 1219-1235. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Prickett S.E., Mavrovouniotis M.L., (1997b) Construction of Complex Reaction Systems – II. Molecule manipulation and reaction application algorithms, Comput. Chem. Eng. 21, 11, 1237- 1254. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Prickett S.E., Mavrovouniotis M.L. (1997c) Construction of Complex Reaction Systems – III. An example: alkylation of olefins, Comput. Chem. Eng. 21, 12, 1325-1337. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Quann R.J., Jaffe S.B. (1992) Structure-oriented lumping: describing the chemistry of complex hydrocarbon mixtures, Ind. Eng. Chem. Res. 31, 11, 2483-2497. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Quann R.J., Jaffe S.B. (1996) Building useful models of complex reaction systems in petroleum refining, Chem. Eng. Sci. 51, 10, 1615-1635. [CrossRef] [Google Scholar]
  • Quann R.J. (1998) Modeling the Chemistry of Complex Petroleum Mixtures, Environ. Health Persp. 106, 6, 1441-1448. [CrossRef] [PubMed] [Google Scholar]
  • Quintana-Solórzano R., Thybaut J.W., Marin G.B., Lodeng R., Holmen A. (2005) Single-Event MicroKinetics for coke formation in catalytic cracking, Catal. Today 107, 8, 619-629. [CrossRef] [Google Scholar]
  • Quintana-Solórzano R., Thybaut J.W., Marin G.B. (2007a) A single- event microkinetic analysis of the catalytic cracking of (cyclo)alkanes on an equilibrium catalyst in the absence of coke formation, Chem. Eng. Sci. 62, 18-20, 5033-5038. [CrossRef] [Google Scholar]
  • Quintana-Solórzano R., Thybaut J.W., Galtier P., Marin G.B. (2007b) Single-Event MicroKinetics for coke formation during the catalytic cracking of (cyclo)alkane/1-octene mixtures, Catal. Today 127, 1, 17-30. [CrossRef] [Google Scholar]
  • Ramage M.P., Graziani K.R., Krambeck F.J. (1980) Development of Mobil’s Reforming Model, Chem. Eng. Sci. 35 1, 41-48 [CrossRef] [Google Scholar]
  • Ramage M.P., Graziani K.R., Schipper P.H., Krambeck F.J., Choi B.C. (1987) KINPtR (Mobil’s Kinetic Reforming Model): A Review of Mobil’s Industrial Process Modeling Philosophy, in Adv. Chem. Eng., Wei J., Anderson J.L., Bischoff K.B., Denn M.M., Seinfeld J.H. (eds), Academic Press, Orlando, 13, 193-266 [Google Scholar]
  • Ranzi E., Faravelli T., Gaffuri P., Sogaro A. (1995) Low Temperature Combustion – Automatic-Generation of Oxidation Reactions and Lumping procedures, Combust. Flame 102, 179-192. [CrossRef] [Google Scholar]
  • Ratkiewicz A., Truong T.N. (2003) Application of Chemical Graph Theory for Automated Mechanism Generation, J. Chem. Inf. Comput. Sci. 43, 36-44. [CrossRef] [PubMed] [Google Scholar]
  • Ratkiewicz A., Truong T.N. (2006) Automated mechanism generation: From symbolic calculation to complex chemistry, Int. J. Quantum Chem. 106, 1, 244-255. [CrossRef] [Google Scholar]
  • Sapre A.V. (1991) Kinetic Modelling at Mobil: A Historical Perspective, in Chemical Reactions in Complex Mixtures: the Mobil Workshop, Sapre A.V., Krambeck F.J. (eds), Van Nostrand Reinhold, New York, Chap. 12, pp. 222-253. [Google Scholar]
  • Schipper P.H., Graziani K.R., Choi B.C., Ramage M.P. (1984) The Extension of Mobil’s Kinetic Reforming Model to include Catalyst Deactivation, Int. Chem. Eng. Symp. Ser. 87, 33-44. [Google Scholar]
  • Sinfelt J.H., Hurwitz H., Rohrer J.C. (1960) Kinetics of n-Pentane Isomerization over Pt/Al2O3 Catalyst, J. Phys. Chem. 64, 892-894. [CrossRef] [Google Scholar]
  • Sinfelt J.H., Hurwitz H., Rohrer J.C. (1962) Role of Dehydrogenation Activity in Catalytic Isomerization and Dehydrocyclization of Hydrocarbons, J. Catal. 1, 481-483. [CrossRef] [Google Scholar]
  • Sinfelt J.H. (1981) Catalytic Reforming of Hydrocarbons, in Catalysis: Science and Technology, Anderson J.R., Boudart M. (eds), Springer-Verlag, Berlin, Vol. 1, Chap. 5, pp. 257-300. [Google Scholar]
  • Sinfelt J.H. (1997) Handbook of Heterogeneous Catalysis, Part B: Catalytic Processes, Ertl G., Knozinger H., Weitkamp J. (eds), Wiley-VCH, Weinheim, Germany, Vol. 4, pp. 1939-1954. [Google Scholar]
  • Song J., Raman S., Yu J., Wijaya C.D., Stephanopoulos G., Green W.H. (2003) Development of Automatic Chemical Reaction Mechanism Generation Software Using Object-Oriented Technology, Prepr. Pap. - Am. Chem. Soc., Div. Fuel Chem. 48, 2, 516-517. [Google Scholar]
  • Sotelo-Boyas R., Froment G.F. (2009) Fundamental Kinetic Modeling of Catalytic Reforming, Ind. Eng. Chem. Res. 48, 3, 1107-1119 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Souverijns W., Parton R., Martens J.A., Froment G.F., Jacobs P.A. (1996) Mechanism of the paring reaction of naphtenes, Catal. Lett. 37, 3-4, 207-212. [CrossRef] [Google Scholar]
  • Sterba M.J., Haensel V. (1976) Catalytic Reforming, Ind. Eng. Chem. Prod. Res. Dev. 15, 1, 2-17 [CrossRef] [Google Scholar]
  • Sullivan R.F., Egan C.J., Langlois G.E., Sieg R.P. (1961) A New Reaction That Occurs in the Hydrocracking of Certain Aromatic Hydrocarbons, J. Am. Chem. Soc. 83, 5, 1156-1160. [CrossRef] [Google Scholar]
  • Surla K., Guillaume D., Verstraete J.J., Galtier P. (2011) Single Event Kinetic Modeling: application to isomerization of light paraffins, Oil Gas Sci. Technol., 66, 343-365. [CrossRef] [EDP Sciences] [Google Scholar]
  • Susnow R.G., Dean A.M., Green W.H., Peczak P., Broadbelt L.J. (1997) Rate-Based Construction of Kinetic Models for Complex Systems, J. Phys. Chem. A 101, 20, 3731-3740. [CrossRef] [Google Scholar]
  • Svoboda G.D., Vynckier E., Debrabandere B., Froment G.F. (1995) Single-Event Rate Parameters for Paraffin Hydrocracking on a Pt/US-Y Zeolite, Ind. Eng. Chem. Res. 34, 11, 3793-3800. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Temkin O.N., Zeigarnik A.V., Kuz’min A.E., Bruk L.G., Slivinskii E.V. (2002) Construction of the reaction networks for heterogeneous catalytic reactions: Fischer-Tropsch synthesis and related reactions, Russ. Chem. Bull. Int. Ed. 51, 1, 1-36. [CrossRef] [Google Scholar]
  • Thybaut J.W., Marin G.B. (2003) Kinetic Modeling of the Conversion of Complex Hydrocarbon Feedstocks by Acid Catalysis, Chem. Eng. Technol. 26, 4, 509-514. [CrossRef] [Google Scholar]
  • Tomlin A.S., Turanyi T., Pilling M.J. (1997) Mathematical tools for the construction, investigation and reduction of combustion mechanisms, in Low-Temperature Combustion and Autoignition Pilling M.J. (ed) Elsevier, Amsterdam. [Google Scholar]
  • True W.R., Koottungal L. (2010) Global capacity growth slows, but Asian refineries bustle, Oil Gas J. 108, 46, 50-59. [Google Scholar]
  • Ugi I., Bauer J., Bley K., Dengler A., Dietz A., Fontain E., Gruber B., Herges R., Knauer M., Reitsam K., Stein N. (1993) Computer Assisted Solution of Chemical Problems - The Historical Development and the Present State of the Art of a New Discipline of Chemistry, Angew. Chem. Int. Ed. Engl. 32, 201-227. [CrossRef] [Google Scholar]
  • Van Geem K.M., Reyniers M.F., Marin G.B., Song J., Mattheu D.M., Green W.H. (2006) Automatic Network generation using RMG for Steam Cracking of n-Hexane, AIChE J. 52, 2, 718-730. [CrossRef] [Google Scholar]
  • Van Geem K.M., Reyniers M.F., Marin G.B. (2008) Challenges of Modeling Steam Cracking of Heavy Feedstocks, Oil Gas Sci. Technol. – Rev. IFP 63, 1, 79-94. [CrossRef] [EDP Sciences] [Google Scholar]
  • Van Trimpont P.A., Marin G.B., Froment G.F. (1985) Activities and Selectivities for Reforming Reactions on Unsulphided and Sulphided Commercial Platinum and Platinum-Rhenium Catalysts, Appl. Catal. 17, 1, 161-173. [CrossRef] [Google Scholar]
  • Van Trimpont P.A., Marin G.B., Froment G.F. (1986a) Kinetics of Methyl cyclohexane Dehydrogenation on Sulphided Commercial Pt/Al2O3 and Pt-Re/Al2O3 Catalysts, Ind. Eng. Chem. Fund. 25, 4, 544-553. [CrossRef] [Google Scholar]
  • Van Trimpont P.A., Marin G.B., Froment G.F. (1986b) Kinetics of the Reforming of C7-Hydrocarbons on a Commercial Pt-Re/Al2O3 Catalyst, Appl. Catal. 24, 1, 53-68 [CrossRef] [Google Scholar]
  • Van Trimpont P.A., Marin G.B., Froment G.F. (1988) Reforming of C7-Hydrocarbons on a Sulphided Commercial Pt/Al2O3 Catalyst, Ind. Eng. Chem. Res. 27, 1, 51-57. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Verstraete J. (1997) Kinetische Studie van de Katalytische Reforming van Nafta over een Pt-Sn/Al2O3 Katalysator, PhD Thesis, Universiteit Gent. [Google Scholar]
  • Vleduts G.E. (1963) Concerning One System of Classification and Codification of Organic Reactions, Inf. Storage Retr. 1, 117-146. [CrossRef] [Google Scholar]
  • Vynckier E., Froment G.F. (1991) Modeling of the kinetics of complex processes upon elementary steps, in Kinetic and thermodynamic lumping of multicomponent mixtures, Astarita G., Sandler S.I. (eds), Elsevier Science Publishers BV, Amsterdam, pp. 131-161. [Google Scholar]
  • Warth V., Battin-Leclerc F., Fournet R., Glaude P.A., Come G.M., Scacchi G. (2000) Computer based generation of reaction mechanisms for gas-phase oxidation, Comput. Chem. 24, 541-560. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Wei W., Bennett C.A., Tanaka R., Hou G., Klein M.T. (2008) Detailed kinetic models for catalytic reforming, Fuel Process. Technol. 89, 4, 344-349. [CrossRef] [Google Scholar]
  • Weitkamp J., Ernst S., Karge H.G. (1984) Peculiarities in the Conversion of Naphthenes on Bifunctional Catalysts, Erdöl und Kohle, Erdgas, Petrochemie vereinigt mit Brennstoff-Chemie 37 10, 457-462. [Google Scholar]
  • Willems P.A., Froment G.F. (1988a) Kinetic Modeling of the Thermal Cracking of Hydrocarbons. 1. Calculation of Frequency Factors, Ind. Eng. Chem. Res. 27, 11, 1959-1966. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Willems P.A., Froment G.F. (1988b) Kinetic Modeling of the Thermal Cracking of Hydrocarbons. 2. Calculation of Activation Energies, Ind. Eng. Chem. Res. 27, 11, 1966-1971. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Wong H.W., Li X., Swihart M.T., Broadbelt L.J. (2004) Detailed Kinetic Modeling of Silicon Nanoparticle Formation Chemistry via Automated Mechanism Generation, J. Phys. Chem. A 108, 46, 10122-10132. [CrossRef] [Google Scholar]
  • Zeigarnik A.V., Valdés-Pérez R.E., Temkin O.N., Bruk L.G., Shalgunov S.I. (1997) Computer-Aided Mechanism Elucidation of Acetylene Hydrocarboxylation to Acrylic Acid Based on a Novel Union of Empirical and Formal Methods, Organometallics 16, 14, 3114-3127. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.