Dossier: Chemical Reaction Modelling of Refining Processes
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Number 3, May-June 2011
Dossier: Chemical Reaction Modelling of Refining Processes
Page(s) 423 - 435
DOI https://doi.org/10.2516/ogst/2009075
Published online 07 October 2010
  • Froment G.F. (1991) Kinetic Modeling of Complex Catalytic Reactions, Revue de l’Institut francais du pétrole 46, 4, 491-500. [Google Scholar]
  • Verstraete J. (1997) Kinetische studie van de katalytische reforming van nafta over een Pt-Sn/Al2O3 katalysator, PhD Thesis, Ghent University, Ghent. [Google Scholar]
  • Schweitzer J.M., Galtier P., Schweich D. (1999) A single events kinetic model for the hydrocracking of paraffins in a three-phase reactor, Chem. Eng. Sci. 54, 13-14, 2441-2452. [Google Scholar]
  • Dewachtere N.V., Santaella F., Froment G.F. (1999) Application of a single-event kinetic model in the simulation of an industrial riser reactor for the catalytic cracking of vacuum gas oil, Chem. Eng. Sci. 54, 15-16, 3653-3660. [Google Scholar]
  • Van Engelandt W. (1998) Reformuleren van Nafta door Selectieve Hydrocracking, PhD Thesis, Ghent University, Ghent. [Google Scholar]
  • Klinke D.J., Broadbelt L.J. (1999) Construction of a mechanistic model of Fischer-Tropsch synthesis on Ni(111) and Co(0001) surfaces, Chem. Eng. Sci. 54, 15-16, 3379-3389. [Google Scholar]
  • Storsaeter S., Chen D., Holmen A. (2006) Microkinetic modelling of the formation of C1 and C2 products in the Fischer-Tropsch synthesis over cobalt catalysts, Surf. Sci. 600, 10, 2051-2063. [Google Scholar]
  • Shustorovich E., Sellers H. (1998) The UBI-QEP method: a practical theoretical approach to understanding chemistry on transition metal surfaces, Surf. Sci. Rep. 31, 1-3, 5-119. [Google Scholar]
  • Lozano-Blanco G., Thybaut J.W., Galtier P., Surla K., Marin G.B. (2006) Fischer-Tropsch synthesis: development of a microkinetic model for metal catalysis, Oil Gas Sci. Technol. – Rev. IFP 61, 4, 489-496. [CrossRef] [Google Scholar]
  • Temkin O.N., Zeigarnik A.V., Kuz’min A.E., Bruk L.G., Slivinskii E.V. (2002) Construction of the reaction networks for heterogeneous catalytic reactions: Fischer-Tropsch synthesis and related reactions, Russ. Chem. B+ 51, 1, 1-36. [CrossRef] [Google Scholar]
  • Dry M.E. (2004) Present and future applications of the Fischer- Tropsch process, Appl. Catal. A-Gen. 276, 1-2, 1-3. [CrossRef] [Google Scholar]
  • Dry M.E., Steynberg A.P. (2004) Commercial Fischer-Tropsch process applications, Stud. Surf. Sci. Catal.: Fischer-Tropsch Technology 152, 406-481. [CrossRef] [Google Scholar]
  • Dry M.E. (2002) The Fischer-Tropsch process: 1950-2000, Catal. Today 71, 3-4, 227-241. [Google Scholar]
  • Dry M.E. (1990) The Fischer-Tropsch process - commercial aspects, Catal. Today 6, 13-206. [Google Scholar]
  • Hindermann J.P., Hutchings G.J., Kiennemann A. (1993) Mechanistic aspects of the formation of hydrocarbons and alcohols from CO hydrogenation, Catal. Rev. 35, 1, 1-127. [CrossRef] [Google Scholar]
  • Anderson R.B. (1984) The Fischer-Tropsch synthesis, Academic Press, New York. [Google Scholar]
  • Iglesia E., Reyes S.C., Madon R.J., Soled S.L. (1993) Selectivity control and catalyst design in the Fischer-Tropsch synthesis - sites, pellets, and reactors, Adv. Catal. 39, 39, 221-302. [Google Scholar]
  • Yakubovich M.N. (2002) Equations for the molecular mass distribution of hydrocarbons formed in CO hydrogenation on a cobalt-zirconium catalyst, Kinet. Catal.+ 43, 1, 67-72. [CrossRef] [Google Scholar]
  • Patzlaff J., Liu Y., Graffmann C., Gaube J. (1999) Studies on product distributions of iron and cobalt catalyzed Fischer- Tropsch synthesis, Appl. Catal. A-Gen. 186, 1-2, 109-119. [CrossRef] [Google Scholar]
  • Iglesia E., Reyes S.C., Madon R.J. (1991) Transport-enhanced alpha-olefin readsorption pathways in Ru-catalyzed hydrocarbon synthesis, J. Catal. 129, 1, 238-256. [Google Scholar]
  • Kuipers E.W., Vinkenburg I.H., Oosterbeek H. (1995) Chainlength dependence of alpha-olefin readsorption in Fischer- Tropsch synthesis, J. Catal. 152, 1, 137-146. [Google Scholar]
  • Lox E.S. (1987) De synthese van koolwaterstoffen uit koolstofmonoxyde en waterstof, PhD Thesis, Ghent University, Ghent. [Google Scholar]
  • Lox E., Coenen F., Vermeulen R., Froment G.F. (1988) A versatile bench-scale unit for kinetic-studies of catalytic reactions, Ind. Eng. Chem. Res. 27, 4, 576-580. [Google Scholar]
  • Lox E.S., Froment G.F. (1993) Kinetics of the Fischer-Tropsch reaction on a precipitated promoted iron catalyst. 1. Experimental procedure and results, Ind. Eng. Chem. Res. 32, 1, 61-70. [Google Scholar]
  • Lox E.S., Marin G.B., Degrave E., Bussiere P. (1988) Characterization of a promoted precipitated iron catalyst for Fischer-Tropsch synthesis, Appl. Catal. 40, 1-2, 197-218. [Google Scholar]
  • Froment G.F., Bischoff K.B. (1990) Chemical reactor analysis and design, 2nd ed., Wiley, New York, p. xxxiv, 664 p. [Google Scholar]
  • Lox E.S., Froment G.F. (1993) Kinetics of the Fischer-Tropsch reaction on a precipitated promoted iron catalyst. 2. Kinetic modeling, Ind. Eng. Chem. Res. 32, 1, 71-82. [Google Scholar]
  • Froment G.F. (1975) Model discrimination and parameter estimation in heterogeneous catalysis, Aiche J. 21, 6, 1041-1057. [Google Scholar]
  • Froment G.F., Hosten L.H. (1981) Catalytic kinetics: modelling, Catalysis: science and technology, Anderson J.R., Boudart M. (eds), Springer, Berlin, Vol. 2, pp. 97-170. [Google Scholar]
  • Marquardt D.W. (1963) An algorithm for least-squares estimation of non-linear parameters, J. Soc. Ind. Appl. Math. 11, 2, 431-441. [Google Scholar]
  • Rosenbrock H.H. (1960) An automatic method for finding the greatest or least value of a function, Comput. J. 3, 175-184. [Google Scholar]
  • Boggs P.T., Tolle J.W. (1989) A strategy for global convergence in a sequential quadratic-programming algorithm, SIAM J. Numer. Anal. 26, 3, 600-623. [Google Scholar]
  • http://netlib.org. [Google Scholar]
  • Claeys P., Van Steen E. (2004) Basic studies, Fischer-Tropsch Technology, Catalysis, S. i. S. S. a., Ed. Elsevier, Amsterdam, Vol. 152. [Google Scholar]
  • Overett M.J., Hill R.O., Moss J.R. (2000) Organometallic chemistry and surface science: mechanistic models for the Fischer- Tropsch synthesis, Coordin. Chem. Rev. 206, 581-605. [CrossRef] [Google Scholar]
  • Bent B.E. (1996) Mimicking aspects of heterogeneous catalysis: generating, isolating, and reacting proposed surface intermediates on single crystals in vacuum, Chem. Rev. 96, 4, 1361-1390. [CrossRef] [PubMed] [Google Scholar]
  • Toyir J., Leconte M., Niccolai G.P., Basset J.M. (1995) Hydrogenolysis and homologation of 3,3-dimethyl-1-butene on Ru/SiO2 catalyst - implications for the mechanism of carbon-carbon bond formation and cleavage on metal-surfaces, J. Catal. 152, 2, 306-312. [Google Scholar]
  • Zaera F. (2002) Selectivity in hydrocarbon catalytic reforming: a surface chemistry perspective, Appl. Catal. A-Gen. 229, 1-2, 75-91. [CrossRef] [Google Scholar]
  • Newsome D.S. (1980) The water-gas shift reaction, Catal. Rev. 21, 2, 275-318. [CrossRef] [Google Scholar]
  • Rao K.R.P.M., Huggins F.E., Mahajan V., Huffman G.P., Rao V.U.S. (1994) The role of magnetite in Fischer-Tropsch synthesis, Hyperfine Interact. 93, 1-4, 1745-1749. [Google Scholar]
  • Zhang H.B., Schrader G.L. (1985) Characterization of a fused ron catalyst for Fischer-Tropsch synthesis by in situ laser raman-spectroscopy, J. Catal. 95, 1, 325-332. [Google Scholar]
  • Rethwisch D.G., Dumesic J.A. (1986) The effect of metal-oxygen bond strength on properties of oxides. 2. Water-gas shift over bulk oxides, Appl. Catal. 21, 1, 97-109. [Google Scholar]
  • van Santen R.A., Niemantsverdriet J.W. (1995) Chemical kinetics and catalysis, Plenum Press, New York, p. xi, 280. [Google Scholar]
  • Teng B.T., Chang J., Yang J., Wang G., Zhang C.H., Xu Y.Y., Xiang H.W., Li Y.W. (2005) Water gas shift reaction kinetics in Fischer-Tropsch synthesis over an industrial Fe-Mn catalyst, Fuel 84, 7-8, 917-926. [Google Scholar]
  • Clymans P.J., Froment G.F. (1984) Computer-generation of reaction paths and rate-equations in the thermal-cracking of normal and branched paraffins, Comput. Chem. Eng. 8, 2, 137-142. [Google Scholar]
  • Svoboda G.D., Vynckier E., Debrabandere B., Froment G.F. (1995) Single-event rate parameters for paraffin hydrocracking oil a Pt/US-Y zeolite, Ind. Eng. Chem. Res. 34, 11, 3793-3800. [Google Scholar]
  • Vynckier E., Froment G.F. (1991) Modeling of the kinetics of complex processes based upon elementary steps, Kinetic and Thermodynamic Lumping of Multicomponent Mixtures, Astarita G., Sandler S.I. (eds), Elsevier, Amsterdam. [Google Scholar]
  • Feng W., Vynckier E., Froment G.F. (1993) Single-event kinetics of catalytic cracking, Ind. Eng. Chem. Res. 32, 12, 2997-3005. [Google Scholar]
  • Wauters S., Marin G.B. (2001) Computer generation of a network of elementary steps for coke formation during the thermal cracking of hydrocarbons, Chem. Eng. J. 82, 1-3, 267-279. [Google Scholar]
  • Baltanas M.A., Froment G.F. (1985) Computer-generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins on Pt-containing bifunctional catalysts, Comput. Chem. Eng. 9, 1, 71-81. [Google Scholar]
  • Mhadeshwar A.B., Wang H., Vlachos D.G. (2003) Thermodynamic consistency in microkinetic development of surface reaction mechanisms, J. Phys. Chem. B 107, 46, 12721-12733. [Google Scholar]
  • Cohen N. (1992) Thermochemistry of alkyl free-radicals, J. Phys. Chem. 96, 22, 9052-9058. [Google Scholar]
  • Cohen N. (1996) Revised group additivity values for enthalpies of formation (at 298 K) of carbon-hydrogen and carbon-hydrogenoxygen compounds, J. Phys. Chem. Ref. Data 25, 6, 1411-1481. [Google Scholar]
  • Cohen N., Benson S.W. (1993) Estimation of heats of formation of organic-compounds by additivity methods, Chem. Rev. 93, 7, 2419-2438. [Google Scholar]
  • http://webbook.nist.gov/chemistry. [Google Scholar]
  • Lide D.R. (2003) CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, 84th ed., David R. Lide (ed.), CRC, Boca Raton, Fla., London, p. 1 v (various pagings). [Google Scholar]
  • Lozano-Blanco G., Thybaut J.W., Surla K., Galtier P., Marin G.B. (in preparation). [Google Scholar]
  • Boudart M., Djéga-Mariadassou G. (1984) Kinetics of heterogeneous catalytic reactions, Princeton University Press, Princeton, N.J., p. xviii, 222 p. [Google Scholar]
  • Teng B.T., Chang J., Zhang C.H., Cao D.B., Yang J., Liu Y., Guo X.H., Xiang H.W., Li Y.W. (2006) A comprehensive kinetics model of Fischer-Tropsch synthesis over an industrial Fe-Mn catalyst, Appl. Catal. A-Gen. 301, 1, 39-50. [CrossRef] [Google Scholar]
  • Yang J., Liu Y., Chang J., Wang Y.N., Bai L., Xu Y.Y., Xiang H.W., Li Y.W., Zhong B. (2003) Detailed kinetics of Fischer- Tropsch synthesis on an industrial Fe-Mn catalyst, Ind. Eng. Chem. Res. 42, 21, 5066-5090. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.