Dossier: Chemical Reaction Modelling of Refining Processes
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Number 3, May-June 2011
Dossier: Chemical Reaction Modelling of Refining Processes
Page(s) 423 - 435
DOI https://doi.org/10.2516/ogst/2009075
Published online 07 October 2010
  • Froment G.F. (1991) Kinetic Modeling of Complex Catalytic Reactions, Revue de l’Institut francais du pétrole 46, 4, 491-500.
  • Verstraete J. (1997) Kinetische studie van de katalytische reforming van nafta over een Pt-Sn/Al2O3 katalysator, PhD Thesis, Ghent University, Ghent.
  • Schweitzer J.M., Galtier P., Schweich D. (1999) A single events kinetic model for the hydrocracking of paraffins in a three-phase reactor, Chem. Eng. Sci. 54, 13-14, 2441-2452.
  • Dewachtere N.V., Santaella F., Froment G.F. (1999) Application of a single-event kinetic model in the simulation of an industrial riser reactor for the catalytic cracking of vacuum gas oil, Chem. Eng. Sci. 54, 15-16, 3653-3660.
  • Van Engelandt W. (1998) Reformuleren van Nafta door Selectieve Hydrocracking, PhD Thesis, Ghent University, Ghent.
  • Klinke D.J., Broadbelt L.J. (1999) Construction of a mechanistic model of Fischer-Tropsch synthesis on Ni(111) and Co(0001) surfaces, Chem. Eng. Sci. 54, 15-16, 3379-3389.
  • Storsaeter S., Chen D., Holmen A. (2006) Microkinetic modelling of the formation of C1 and C2 products in the Fischer-Tropsch synthesis over cobalt catalysts, Surf. Sci. 600, 10, 2051-2063. [CrossRef]
  • Shustorovich E., Sellers H. (1998) The UBI-QEP method: a practical theoretical approach to understanding chemistry on transition metal surfaces, Surf. Sci. Rep. 31, 1-3, 5-119. [CrossRef]
  • Lozano-Blanco G., Thybaut J.W., Galtier P., Surla K., Marin G.B. (2006) Fischer-Tropsch synthesis: development of a microkinetic model for metal catalysis, Oil Gas Sci. Technol. – Rev. IFP 61, 4, 489-496. [CrossRef] [EDP Sciences]
  • Temkin O.N., Zeigarnik A.V., Kuz’min A.E., Bruk L.G., Slivinskii E.V. (2002) Construction of the reaction networks for heterogeneous catalytic reactions: Fischer-Tropsch synthesis and related reactions, Russ. Chem. B+ 51, 1, 1-36. [CrossRef]
  • Dry M.E. (2004) Present and future applications of the Fischer- Tropsch process, Appl. Catal. A-Gen. 276, 1-2, 1-3. [CrossRef]
  • Dry M.E., Steynberg A.P. (2004) Commercial Fischer-Tropsch process applications, Stud. Surf. Sci. Catal.: Fischer-Tropsch Technology 152, 406-481. [CrossRef]
  • Dry M.E. (2002) The Fischer-Tropsch process: 1950-2000, Catal. Today 71, 3-4, 227-241. [CrossRef]
  • Dry M.E. (1990) The Fischer-Tropsch process - commercial aspects, Catal. Today 6, 13-206.
  • Hindermann J.P., Hutchings G.J., Kiennemann A. (1993) Mechanistic aspects of the formation of hydrocarbons and alcohols from CO hydrogenation, Catal. Rev. 35, 1, 1-127. [CrossRef]
  • Anderson R.B. (1984) The Fischer-Tropsch synthesis, Academic Press, New York.
  • Iglesia E., Reyes S.C., Madon R.J., Soled S.L. (1993) Selectivity control and catalyst design in the Fischer-Tropsch synthesis - sites, pellets, and reactors, Adv. Catal. 39, 39, 221-302. [CrossRef]
  • Yakubovich M.N. (2002) Equations for the molecular mass distribution of hydrocarbons formed in CO hydrogenation on a cobalt-zirconium catalyst, Kinet. Catal.+ 43, 1, 67-72. [CrossRef]
  • Patzlaff J., Liu Y., Graffmann C., Gaube J. (1999) Studies on product distributions of iron and cobalt catalyzed Fischer- Tropsch synthesis, Appl. Catal. A-Gen. 186, 1-2, 109-119. [CrossRef]
  • Iglesia E., Reyes S.C., Madon R.J. (1991) Transport-enhanced alpha-olefin readsorption pathways in Ru-catalyzed hydrocarbon synthesis, J. Catal. 129, 1, 238-256. [CrossRef]
  • Kuipers E.W., Vinkenburg I.H., Oosterbeek H. (1995) Chainlength dependence of alpha-olefin readsorption in Fischer- Tropsch synthesis, J. Catal. 152, 1, 137-146. [CrossRef]
  • Lox E.S. (1987) De synthese van koolwaterstoffen uit koolstofmonoxyde en waterstof, PhD Thesis, Ghent University, Ghent.
  • Lox E., Coenen F., Vermeulen R., Froment G.F. (1988) A versatile bench-scale unit for kinetic-studies of catalytic reactions, Ind. Eng. Chem. Res. 27, 4, 576-580. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Lox E.S., Froment G.F. (1993) Kinetics of the Fischer-Tropsch reaction on a precipitated promoted iron catalyst. 1. Experimental procedure and results, Ind. Eng. Chem. Res. 32, 1, 61-70. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Lox E.S., Marin G.B., Degrave E., Bussiere P. (1988) Characterization of a promoted precipitated iron catalyst for Fischer-Tropsch synthesis, Appl. Catal. 40, 1-2, 197-218. [CrossRef]
  • Froment G.F., Bischoff K.B. (1990) Chemical reactor analysis and design, 2nd ed., Wiley, New York, p. xxxiv, 664 p.
  • Lox E.S., Froment G.F. (1993) Kinetics of the Fischer-Tropsch reaction on a precipitated promoted iron catalyst. 2. Kinetic modeling, Ind. Eng. Chem. Res. 32, 1, 71-82. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Froment G.F. (1975) Model discrimination and parameter estimation in heterogeneous catalysis, Aiche J. 21, 6, 1041-1057. [CrossRef]
  • Froment G.F., Hosten L.H. (1981) Catalytic kinetics: modelling, Catalysis: science and technology, Anderson J.R., Boudart M. (eds), Springer, Berlin, Vol. 2, pp. 97-170.
  • Marquardt D.W. (1963) An algorithm for least-squares estimation of non-linear parameters, J. Soc. Ind. Appl. Math. 11, 2, 431-441. [CrossRef] [MathSciNet]
  • Rosenbrock H.H. (1960) An automatic method for finding the greatest or least value of a function, Comput. J. 3, 175-184. [CrossRef] [MathSciNet]
  • Boggs P.T., Tolle J.W. (1989) A strategy for global convergence in a sequential quadratic-programming algorithm, SIAM J. Numer. Anal. 26, 3, 600-623. [CrossRef] [MathSciNet]
  • http://netlib.org.
  • Claeys P., Van Steen E. (2004) Basic studies, Fischer-Tropsch Technology, Catalysis, S. i. S. S. a., Ed. Elsevier, Amsterdam, Vol. 152.
  • Overett M.J., Hill R.O., Moss J.R. (2000) Organometallic chemistry and surface science: mechanistic models for the Fischer- Tropsch synthesis, Coordin. Chem. Rev. 206, 581-605. [CrossRef]
  • Bent B.E. (1996) Mimicking aspects of heterogeneous catalysis: generating, isolating, and reacting proposed surface intermediates on single crystals in vacuum, Chem. Rev. 96, 4, 1361-1390. [CrossRef] [PubMed]
  • Toyir J., Leconte M., Niccolai G.P., Basset J.M. (1995) Hydrogenolysis and homologation of 3,3-dimethyl-1-butene on Ru/SiO2 catalyst - implications for the mechanism of carbon-carbon bond formation and cleavage on metal-surfaces, J. Catal. 152, 2, 306-312. [CrossRef]
  • Zaera F. (2002) Selectivity in hydrocarbon catalytic reforming: a surface chemistry perspective, Appl. Catal. A-Gen. 229, 1-2, 75-91. [CrossRef]
  • Newsome D.S. (1980) The water-gas shift reaction, Catal. Rev. 21, 2, 275-318. [CrossRef]
  • Rao K.R.P.M., Huggins F.E., Mahajan V., Huffman G.P., Rao V.U.S. (1994) The role of magnetite in Fischer-Tropsch synthesis, Hyperfine Interact. 93, 1-4, 1745-1749. [CrossRef]
  • Zhang H.B., Schrader G.L. (1985) Characterization of a fused ron catalyst for Fischer-Tropsch synthesis by in situ laser raman-spectroscopy, J. Catal. 95, 1, 325-332. [CrossRef]
  • Rethwisch D.G., Dumesic J.A. (1986) The effect of metal-oxygen bond strength on properties of oxides. 2. Water-gas shift over bulk oxides, Appl. Catal. 21, 1, 97-109. [CrossRef]
  • van Santen R.A., Niemantsverdriet J.W. (1995) Chemical kinetics and catalysis, Plenum Press, New York, p. xi, 280.
  • Teng B.T., Chang J., Yang J., Wang G., Zhang C.H., Xu Y.Y., Xiang H.W., Li Y.W. (2005) Water gas shift reaction kinetics in Fischer-Tropsch synthesis over an industrial Fe-Mn catalyst, Fuel 84, 7-8, 917-926.
  • Clymans P.J., Froment G.F. (1984) Computer-generation of reaction paths and rate-equations in the thermal-cracking of normal and branched paraffins, Comput. Chem. Eng. 8, 2, 137-142. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Svoboda G.D., Vynckier E., Debrabandere B., Froment G.F. (1995) Single-event rate parameters for paraffin hydrocracking oil a Pt/US-Y zeolite, Ind. Eng. Chem. Res. 34, 11, 3793-3800. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Vynckier E., Froment G.F. (1991) Modeling of the kinetics of complex processes based upon elementary steps, Kinetic and Thermodynamic Lumping of Multicomponent Mixtures, Astarita G., Sandler S.I. (eds), Elsevier, Amsterdam.
  • Feng W., Vynckier E., Froment G.F. (1993) Single-event kinetics of catalytic cracking, Ind. Eng. Chem. Res. 32, 12, 2997-3005. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Wauters S., Marin G.B. (2001) Computer generation of a network of elementary steps for coke formation during the thermal cracking of hydrocarbons, Chem. Eng. J. 82, 1-3, 267-279. [CrossRef]
  • Baltanas M.A., Froment G.F. (1985) Computer-generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins on Pt-containing bifunctional catalysts, Comput. Chem. Eng. 9, 1, 71-81. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Mhadeshwar A.B., Wang H., Vlachos D.G. (2003) Thermodynamic consistency in microkinetic development of surface reaction mechanisms, J. Phys. Chem. B 107, 46, 12721-12733. [CrossRef]
  • Cohen N. (1992) Thermochemistry of alkyl free-radicals, J. Phys. Chem. 96, 22, 9052-9058. [CrossRef]
  • Cohen N. (1996) Revised group additivity values for enthalpies of formation (at 298 K) of carbon-hydrogen and carbon-hydrogenoxygen compounds, J. Phys. Chem. Ref. Data 25, 6, 1411-1481. [CrossRef]
  • Cohen N., Benson S.W. (1993) Estimation of heats of formation of organic-compounds by additivity methods, Chem. Rev. 93, 7, 2419-2438. [CrossRef]
  • http://webbook.nist.gov/chemistry.
  • Lide D.R. (2003) CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, 84th ed., David R. Lide (ed.), CRC, Boca Raton, Fla., London, p. 1 v (various pagings).
  • Lozano-Blanco G., Thybaut J.W., Surla K., Galtier P., Marin G.B. (in preparation).
  • Boudart M., Djéga-Mariadassou G. (1984) Kinetics of heterogeneous catalytic reactions, Princeton University Press, Princeton, N.J., p. xviii, 222 p.
  • Teng B.T., Chang J., Zhang C.H., Cao D.B., Yang J., Liu Y., Guo X.H., Xiang H.W., Li Y.W. (2006) A comprehensive kinetics model of Fischer-Tropsch synthesis over an industrial Fe-Mn catalyst, Appl. Catal. A-Gen. 301, 1, 39-50. [CrossRef]
  • Yang J., Liu Y., Chang J., Wang Y.N., Bai L., Xu Y.Y., Xiang H.W., Li Y.W., Zhong B. (2003) Detailed kinetics of Fischer- Tropsch synthesis on an industrial Fe-Mn catalyst, Ind. Eng. Chem. Res. 42, 21, 5066-5090. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.