Dossier: Chemical Reaction Modelling of Refining Processes
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Number 3, May-June 2011
Dossier: Chemical Reaction Modelling of Refining Processes
Page(s) 343 - 365
DOI https://doi.org/10.2516/ogst/2011119
Published online 05 August 2011
  • Baltanas M.A., Froment G.F. (1985) Computer generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins on Pt-containing bifunctional catalysts, Comput. Chem. Eng. 9, 1, 71-81. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Baltanas M.A., Van Raemdonck K.K., Froment G.F., Mohedas S.R. (1989) Fundamental kinetic modeling of hydroisomerization and hydrocracking on noble-metal-loaded faujasites. 1. Rate parameters for hydroisomerization, Ind. Eng. Chem. Res. 28, 899-910. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Beirnaert H.C., Alleman J.R., Marin G.B. (2001) A Fundamental Kinetic Model for the Catalytic Cracking of Alkanes on a USY Zeolite in the Presence of Coke Formation, Ind. Eng. Chem. Res. 40, 5, 1337-1347 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Benson S.W., Cruickshank F.R., Golden D.M., Haugen G.R., O’Neal H.E., Rodgers A.S., Shaw R., Walsch R. (1969) Additivity rules for estimation of thermodynamical properties, Chem. Rev. 69, 279-324. [CrossRef] [Google Scholar]
  • Benson S.W. (1976) Thermochemical Kinetics, 2nd ed., John Wiley & Sons, New York. [Google Scholar]
  • Chavarría-Hernández J.C., Ramírez J., Gonzalez H., Baltanas M.A. (2004) Modelling of nHexadecane Hydroisomerization and Hydrocracking Reactions on a Mo/H Beta-Alumina Bi-Functional Catalyst Using the Single Event Concept, Catal. Today 98, 1-2, 235-242. [CrossRef] [Google Scholar]
  • Chavarría-Hernández J.C., Ramírez J., Baltanas M.A. (2008) Single-Event-Lumped-Parameter Hybrid (SELPH) model for nonideal hydrocracking of n-octane, Catal. Today 130, 2-4, 455-461. [CrossRef] [Google Scholar]
  • Chavarría-Hernández J.C., Ramírez J. (2009) Modeling Ideal and Nonideal Hydrocracking of Paraffins Using the Single-Event Lumped Parameter Hybrid (SELPH) Model, Ind. Eng. Chem. Res. 48, 3, 1203-1207. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Choudhury I.R., Thybaut J.W., Balasubramanian P., Denayer J.F.M., Martens J.A., Marin G.B. (2010) Synergy between shape selective and non-shape selective bifunctional zeolites modelled via the Single-Event MicroKinetic (SEMK) methodology, Chem. Eng. Sci. 65, 174-178. [CrossRef] [Google Scholar]
  • Clymans P.J., Froment G.F. (1984) Computer generation of reaction paths and rate equations in the thermal cracking of normal and branched paraffins, Comput. Chem. Eng. 8, 2, 137-142. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Dewachtere N.V., Santaella F., Froment G.F. (1999) Application of a single-event kinetic model in the simulation of an industrial riser reactor for the catalytic cracking of vacuum gas oil, Chem. Eng. Sci. 54, 15-16, 3653-3660. [CrossRef] [Google Scholar]
  • Feng W., Vynckier E., Froment G.F. (1993) Single-event kinetics of catalytic cracking, Ind. Eng. Chem. Res. 32, 12, 2997-3005. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Froment G.F. (2005) Single Event Kinetic Modeling of Complex Catalytic Processes, Catal. Rev. 47, 83-124. [CrossRef] [Google Scholar]
  • Guillaume D., Surla K., Galtier P. (2003) From Single Events theory to molecular kinetics: application to industrial process modeling, Chem. Eng. Sci. 58, 21, 4861-4869. [CrossRef] [Google Scholar]
  • Hillewaert L.P., Dierickx J.L., Froment G.F. (1988) Computer generation of reaction schemes and rate equations for thermal cracking, AIChE J. 34, 1, 17-24. [CrossRef] [Google Scholar]
  • Hindmarsch A.C. (1980) LSODE and LSODI, Two New Initial Value Ordinary Differential Equation Solvers, ACM Signum Newsl. 15, 4, 19-21. [Google Scholar]
  • Hindmarsch A.C. (1983) ODEPACK, a systematized collection of ODE solvers, in Scientific Computing, Stepleman R.S. et al. (eds), IMACS, North-Holland, Amsterdam, pp. 55-64. [Google Scholar]
  • Kazansky V.B., Frash M.V., van Santen R.A. (1996) Quantumchemical study of the isobutane cracking on zeolites, Appl. Catal. A: Gen. 146, 1, 225-247. [CrossRef] [Google Scholar]
  • Kazansky V.B. (1999) Adsorbed carbocations as transition states in heterogeneous acid catalyzed transformations of hydrocarbons, Catal. Today 51, 3-4, 419-434. [CrossRef] [Google Scholar]
  • Kumar H., Froment G.F. (2007a) A generalized mechanistic kinetic model for the hydroisomerization and hydrocracking of long-chain paraffins, Ind. Eng. Chem. Res. 46, 12, 4075-4090. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Kumar H., Froment G.F. (2007b) Mechanistic Kinetic Modeling of the Hydrocracking of Complex Feedstocks, such as Vacuum Gas Oils, Ind. Eng. Chem. Res. 46, 18, 5881-5897. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Laxmi Narasimhan C.S., Thybaut J.W., Marin G.B., Martens J.A., Denayer J.F., Baron G.V. (2003a) Pore mouth physisorption of alkanes on ZSM-22: estimation of physisorption enthalpies and entropies by additivity method, J. Catal. 218, 1, 135-147. [CrossRef] [Google Scholar]
  • Laxmi Narasimhan C.S., Thybaut J.W., Marin G.B., Jacobs P.A., Martens J.A., Denayer J.F., Baron G.V. (2003b) Kinetic modeling of pore mouth catalysis in the hydroconversion of n-octane on Pt-HZSM- 22, J. Catal. 220, 2, 399-413. [CrossRef] [Google Scholar]
  • Laxmi Narasimhan C.S., Thybaut J.W., Marin G.B., Denayer J.F., Baron G.V., Martens J.A., Jacobs P.A. (2004) Relumped singleevent microkinetic model for alkane hydrocracking on shape-selective catalysts: catalysis on ZSM-22 pore mouths, bridge acid sites and micropores, Chem. Eng. Sci. 59, 22-23, 4765-4772. [CrossRef] [Google Scholar]
  • Laxmi Narasimhan C.S., Thybaut J.W., Martens J.A., Jacobs P.A., Denayer J.F., Marin G.B. (2006) A unified single-event microkinetic model for alkane hydroconversion in different aggregation states on Pt/H-USY-zeolites, J. Phys. Chem. B 110, 13, 6750-6758. [CrossRef] [PubMed] [Google Scholar]
  • Laxmi Narasimhan C.S., Thybaut J.W., Denayer J.F., Baron G.V., Jacobs P.A., Martens J.A., Marin G.B. (2007) Aggregation state effects in shape-selective hydroconversion, Ind. Eng. Chem. Res. 46, 25, 8710-8721. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Lenoir D., Siehl H.U. (1990) Carbokationen, Carbokation-Radikale, in Methoden der Organische Chemie, Vierte Auflage, Hamack M. (ed.), Georg Thieme Verlag, Stuttgart. [Google Scholar]
  • Levenberg K. (1944) A Method for the Solution of Certain Problems in Least Squares, Quart. Appl. Math. 2, 2, 164-168. [CrossRef] [MathSciNet] [Google Scholar]
  • Lozano-Blanco G., Thybaut J.W., Surla K., Galtier P., Marin G.B. (2006) Fischer-Tropsch Synthesis: Development of a Microkinetic Model for Metal Catalysis, Oil Gas Sci. Technol. 61, 4, 489-496. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lozano-Blanco G., Thybaut J.W., Surla K., Galtier P., Marin G.B. (2008) Single-Event Microkinetic Model for Fischer-Tropsch Synthesis on Iron-Based Catalysts, Ind. Eng. Chem. Res. 47, 16, 5879-5891. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Marcilly C. (2003) Catalyse acido-basique. Vol. 1, Vol. 2, Editions Technip, Paris. [Google Scholar]
  • Marquardt D. (1963) An Algorithm for Least-Squares Estimation of Nonlinear Parameters, J. Soc. Ind. Appl. Math. 11, 2, 431-441. [CrossRef] [MathSciNet] [Google Scholar]
  • Martens G.G., Froment G.F. (1999) Kinetic modeling of paraffins hydrocracking based upon elementary steps and the single event concept, in Reaction kinetics and the development of catalytic processes, Froment G.F., Waugh K.C. (eds), Elsevier Science BV, Stud. Surf. Sci. Catal. 122, 333-340. [Google Scholar]
  • Martens G.G., Marin G.B., Martens J.A., Jacobs P.A., Baron G.V. (2000) A fundamental kinetic model for hydrocracking of C8 to C12 alkanes on Pt/US-Y zeolites, J. Catal. 195, 2, 253-267. [CrossRef] [Google Scholar]
  • Martens G.G., Marin G.B. (2001) Kinetics for hydrocracking based on structural classes: Model development and application, AIChE J. 47, 7, 1607-1622. [CrossRef] [Google Scholar]
  • Martens G.G., Thybaut J.W., Marin G.B. (2001) Single event rate parameters for hydrocracking of cycloalkanes on Pt/US-Y zeolites, Ind. Eng. Chem. Res. 40, 1832-1844. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Martinis J.M. (2004) Single Event Kinetic Modeling of Solid Acid Alkylation of Isobutane With Butenes Over Proton-Exchanged YZeolites, PhD Thesis, Texas A&M University, Texas (USA). [Google Scholar]
  • Martinis J.M., Froment G.F. (2006) Alkylation on Solid Acids. Part 2. Single-Event Kinetic Modeling, Ind. Eng. Chem. Res. 45, 3, 954-967. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Mills G.A., Heinemann H., Milliken T.H., Oblad A.G. (1953) Houdriforming reactions: Catalytic Mechanism, Ind. Eng. Chem. 45, 1, 134-137. [CrossRef] [Google Scholar]
  • Mitsios M., Guillaume D., Galtier P., Schweich D. (2009) Single- Event Microkinetic Model for Long-Chain Paraffin Hydrocracking and Hydroisomerization on an Amorphous Pt/SiO2-Al2O3 Catalyst, Ind. Eng. Chem. Res. 48, 3284-3292. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Moustafa T., Froment G.F. (2001) Kinetic Modeling of Coke Formation and Deactivation in the Catalytic Cracking of Vacuum Gas Oil, Ind. Eng. Chem. Res. 42, 1, 14-25. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Muller C., Scacchi G., Côme G.M. (1991) A topological method for determining the external symmetry number of molecules, Comput. Chem. 15, 1, 17-27. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Natal-Santiago M.A., Alcala R., Dumesic J.A. (1999) DFT Study of the Isomerization of Hexyl Species Involved in the Acid-Catalyzed Conversion of 2-Methyl-Pentene-2, J. Catal. 181, 1, 124-144. [CrossRef] [Google Scholar]
  • Park T.Y., Froment G.F. (2001) Kinetic modeling of the methanol to olefins process: 1. Model formulation, Ind. Eng. Chem. Res. 40, 4172-4186. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Quintana-Solórzano R., Thybaut J.W., Marin G.B., Lødeng R., Holmen A. (2005) Single-Event MicroKinetics for coke formation in catalytic cracking, Catal. Today 107, 8, 619-629. [CrossRef] [Google Scholar]
  • Quintana-Solórzano R., Thybaut J.W., Marin G.B. (2007a) A single- event microkinetic analysis of the catalytic cracking of (cyclo)alkanes on an equilibrium catalyst in the absence of coke formation, Chem. Eng. Sci. 62, 18-20, 5033-5038. [CrossRef] [Google Scholar]
  • Quintana-Solórzano R., Thybaut J.W., Galtier P., Marin G.B. (2007b) Single-Event MicroKinetics for coke formation during the catalytic cracking of (cyclo)alkane/1-octene mixtures, Catal. Today 127, 1, 17-30. [CrossRef] [Google Scholar]
  • Quintana-Solórzano R., Thybaut J.W., Galtier P., Marin G.B. (2010) Simulation of an industrial riser for catalytic cracking in the presence of coking using Single-Event MicroKinetics, Catal. Today 150, 319-331. [CrossRef] [Google Scholar]
  • Ratkiewicz A., Truong T.N. (2003) Application of Chemical Graph Theory for Automated Mechanism Generation, J. Chem. Inf. Comp. Sci. 43, 1, 36-44. [CrossRef] [PubMed] [Google Scholar]
  • Rigby A.M., Kramer G.J., van Santen R.A. (1997) Mechanisms of Hydrocarbon Conversion in Zeolites: A Quantum Mechanical Study, J. Catal. 170, 10, 1-10. [CrossRef] [Google Scholar]
  • Schweitzer J.M., Galtier P., Schweich D. (1999) A single events kinetics model for hydrocracking of paraffins in a three phase reactor, Chem. Eng. Sci. 54, 2441-2452. [CrossRef] [Google Scholar]
  • Surla K., Vleeming H., Guillaume D., Galtier P. (2004) A single events kinetic model: n-butane isomerization, Chem. Eng. Sci. 59, 22-23, 4773-4779. [CrossRef] [Google Scholar]
  • Svoboda G.D., Vynckier E., Debrabandere B., Froment G.F. (1995) Single-Event Rate Parameters for Paraffin Hydrocracking on a Pt/US-Y Zeolite, Ind. Eng. Chem. Res. 34, 11, 3793-3800. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Thybaut J.W., Marin G.B., Baron G.V., Jacobs P.A., Martens J.A. (2001) Alkene protonation enthalpy determination from fundamental kinetic modeling of alkane hydroconversion on Pt/H-(US)Y-Zeolite, J. Catal. 202, 324-339. [CrossRef] [Google Scholar]
  • Thybaut J.W., Marin G.B. (2003) Kinetic Modeling of the Conversion of Complex Hydrocarbon Feedstocks by Acid Catalysis, Chem. Eng. Technol. 26, 4, 509-514. [CrossRef] [Google Scholar]
  • Thybaut J.W., Laxmi Narasimhan C.S., Marin G.B., Denayer J.F.M., Baron G.V., Jacobs P.A., Martens J.A. (2004) Alkylcarbenium ion concentrations in zeolite pores during octane hydrocracking on Pt/H-USY zeolite, Catal. Lett. 94, 1-2, 81-88. [CrossRef] [Google Scholar]
  • Thybaut J.W., Choudhury I.R., Denayer J.F., Baron G.V., Jacobs P.A., Martens J.A., Marin G.B. (2009) Design of optimum zeolite pore system for central hydrocracking of long-chain n-alkanes based on a Single-Event MicroKinetic model, Topics Catal. 52, 9, 1251-1260. [CrossRef] [Google Scholar]
  • Vynckier E., Froment G.F. (1991) Modeling of the kinetics of complex processes upon elementary steps, in Kinetic and thermodynamic lumping of multicomponent mixtures, Astarita G., Sandler S.I. (eds), Elsevier Science Publishers BV, Amsterdam, pp. 131-161. [Google Scholar]
  • Walters W.P., Yalkowsky S.H. (1996) ESCHER – A Computer Program for the Determination of External Rotational Symmetry Numbers from Molecular Topology, J. Chem. Inf. Comp. Sci. 36, 5, 1015-1017. [CrossRef] [Google Scholar]
  • Willems P.A., Froment G.F. (1988a) Kinetic Modeling of the Thermal Cracking of Hydrocarbons. 1. Calculation of Frequency Factors, Ind. Eng. Chem. Res. 27, 11, 1959-1966. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Willems P.A., Froment G.F. (1988b) Kinetic Modeling of the Thermal Cracking of Hydrocarbons. 2. Calculation of Activation Energies, Ind. Eng. Chem. Res. 27, 11, 1966-1971. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.