Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Number 3, May-June 2011
Page(s) 491 - 506
DOI https://doi.org/10.2516/ogst/2010014
Published online 22 February 2011
  • Andreani M., Boullier A.-M., Gratier J.-P. (2005) Development of schistosity by dissolution-crystallization in a Californian serpentinite gouge, J. Struct. Geol. 27, 2256-2267. [CrossRef]
  • Bazin B., Bieber M.T., Roque C., Bouteca M. (1996) Improvement in the characterization of the acid wormholing by in-situ Xray CT visualizations, International Symposium on Formation Damage Control, Lafayette Louisiana USA, SPE paper 31073.
  • Beeler N.M., Hickman S.H. (2004) Stress-induced, time-dependent fracture closure at hydrothermal conditions, J. Geophys. Res. 109, B02211, doi: 10.1029/2002JB001782.
  • Bérest P., Blum P.A., Charpentier J.P., Gharbi H., Valès F. (2004) Fluage du sel gemme sous très faibles charges, creep of rock salt under very small loadings, C.R. Geosciences 336, 15, 1337-1344. [CrossRef]
  • Benedicto A., Plagnes V., Vergély P., Flotté N., Schultz R.A. (2008) Fault and fluid interactions in a rifted margin: integrated study of calcite-sealed fault-related structures (southern Corinth margin), Geol. Soc. London, Spec. Pub. 299, 257-275. [CrossRef]
  • Boullier A.-M., Fujimoto K., Ito H., Ohtani T., Keulen N., Fabbri O., Amitrano D., Dubois M., Pezard P. (2004) Structural evolution of the Nojima fault (Awaji Island, Japan) revisited from the GSJ drill hole at Hirabayashi, Earth Planets Space 56, 1233-1240.
  • Bourouis S., Cornet F.H. (2009) Microseismic activity and fluid fault interactions: some results from the Corinth Rift Laboratory (CRL), Greece, Geophys. J. Int. 178, 561-580, doi: 10.1111/j.1365-246X.2009.04148.x.
  • Bouvier J.D., Kaarssijpesteijn C.H., Kluesner D.F., Onyejekwe C.C., Vanderpal R.C. (1989) 3 dimentional seismic interpretation and fault sealing investigation, Nun river field, Nigeria, AAPG Bull. 73, 1397-1414.
  • Brantley S., Evans B., Hickman S.H., Crerar D.A. (1990) Healing of microcracks in quartz: implications for fluid flow, Geology 18, 136-139. [CrossRef]
  • Brenguier F., Campillo M., Hadziioannou C., Shapiro N.M., Nadeau R.M., Larose E. (2008) Postseismic relaxation along the San Andreas fault in the Parkfield area investigated with continuous seismological observations, Science 321, 1478-1481. [CrossRef] [PubMed]
  • Bretan P., Yielding G., Jones H. (2003) Using calibrated shale gouge ratio to estimate hydrocarbon column heights, AAPG Bull. 87, 397-413. [CrossRef]
  • Cox S.F., Paterson M.S. (1991) Experimental dissolution-precipitation creep in quartz aggregates at high-temperatures, Geophys. Res. Lett. 18, 1401-1404. [CrossRef]
  • De Meer S., Spiers C.J., Peach C.J. (2000) Kinetics of precipitation of gypsum and implications for pressure-solution creep, J. Geol. Soc. London 157, 269-281. [CrossRef]
  • Dewers T., Ortoleva P. (1990) A coupled reaction/transport/mechanical model for intergranular pressure solution stylolites, and differential compaction and cementation in clean sandstones, Geochim. Cosmochim. Ac. 54, 1609-1625. [CrossRef]
  • Dietrich J.H. (1979) Modeling of rock friction 1 experimental results and constitutive equations, J. Geophys. Res. 84, 2161-2168. [CrossRef]
  • Dieterich J.H. (1981) Constitutive properties of faults with simulated gouge, in Mechanical Behavior of Crustal Rocks, Carter N.L., Friedman M., Logan J.M., Sterns D.W. (eds.), Am. Geophys. Union Monogr. 24, 103-120.
  • Dieterich J.H. (1994) A constitutive law for rate of earthquake production and its application to earthquake clustering, J. Geophys. Res. 99, 2601-2618. [CrossRef]
  • Doan M.-L., Brodsky E.E., Kano Y., Ma K.-F. (2006) In situ measurements of the hydraulic diffusivity of the active Chelungpu fault Taiwan, Geophys. Res. Lett. 33, 16.
  • Evans J.P., Chester F.M. (1995) Fluid-rock interaction in faults of the San Andreas system: inference from the San Gabriel fault rock geochemistry, J. Geophys. Res. 100, 13,007-13,020.
  • Freed A.M. (2007) After slip (and only after slip) following the 2004 Parkfield, California earthquake, Geophys. Res. Lett. 34, LO6312, doi: 101029/2006GL029155.
  • Fisher Q.J., Knipe R.J. (2001) The permeability of faults within siliciclastic petroleum reservoirs of the North Sea and Norwegian Continental Shelf, Mar. Petrol. Geol. 18, 1063-1081. [CrossRef]
  • Dysthe K., Renard F., Feder J., Jamtveit B., Meakin P., Jøssang T. (2003) High resolution measurements of pressure solution creep, Phys. Rev. E 68, 011603, doi: 10.1103/PhysRevE.68.011603.
  • Elkhoury J.E., Brodsky E.E., Agnew D.A. (2006) Seismic waves increase permeability, Nature 441, 1135-1138, doi: 10.1038/nature04798.
  • Gratier J.-P., Vialon P. (1980) Deformation pattern in a heterogeneous material, folded and cleaved sedimentary cover immediately overlying a crystalline basement (Oisans, French Alps), Tectonophysics 65, 151-180. [CrossRef]
  • Gratier J.-P., Jenatton L. (1984) Deformation by solution - deposition and reequilibration of fluid inclusions in crystals depending on temperature, internal pressure and stress, J. Struct. Geol. 5, 329-339. [CrossRef]
  • Gratier J.-P., Guiguet R. (1986) Experimental pressure solution deposition on quartz grains, the crucial effect of the nature of the fluid, J. Struct. Geol. 8, 845-56. [CrossRef]
  • Gratier J.-P. (1993) Experimental pressure solution of halite by an indenter technique, Geophys. Res. Lett. 20, 1647-1650. [CrossRef]
  • Gratier J.-P., Renard F., Labaume P. (1999) How pressure solution and fractures interact in the upper crust to make it behave in both a brittle and viscous manner, J. Struct. Geol. 21, 1189-1197. [CrossRef]
  • Gratier J.-P., Favreau P., Renard F. (2003) Modeling fluid transfer along Californian faults when integrating pressure solution crack sealing and compaction process, J. Geophys. Res. 108, 28-52.
  • Gratier J.-P., Gueydan F. (2007) Deformation in the presence of fluids and mineral reactions: effect of fracturing and fluid-rocks interaction on seismic cycle, in Tectonic Faults, agent of change on a dynamic earth, Handy M.R., Hirth G., Hovius N. (eds.), Dahlem Workshop, The MIT Press, Cambridge, Mass., USA, pp. 319-356.
  • Gratier J.-P., Guiguet R., Renard F., Jenatton L. (2009) A pressure solution creep law for quartz from indentation experiments, J. Geophys. Res. 114, B03403, doi: 10.1029/2008JB005652.
  • Guéguen Y., Palciauskas V. (1994) Introduction to the physics of rocks, Princeton University Press editor, 299 p.
  • Gueydan F., Leroy Y.M., Jolivet L., Agard P. (2003) Analysis of continental midcrustal strain localization induced by reaction-softening and microfracturing, J. Geophys. Res. 108, 2064, doi: 10.1029/2001JB000611.
  • Handy M.R. (1989) Deformation regime and the rheological evolution of fault zones in the lithosphere. The effect of pressure, temperature, grain size and time, Tectonophysics 163, 119-159. [CrossRef]
  • Handy M.R., Hirth G., Hovius N. (2007) Introduction, Tectonic fault, in Tectonic faults agent of change on dynamic earth, Handy M.R., Hirth G., Hovius N. (eds.), Dahlem Workshop, The MIT Press, Cambridge, Mass., USA, pp. 1-8.
  • Hellmann R., Gratier J.-P., Chen T. (1998) Mineral-water interactions and stress: pressure solution of halite aggregates, Water Rock Interaction 9, 777-780.
  • Hellmann R., Renders P.J.N., Gratier J.-P., Guiguet R. (2002) Experimental pressure solution compaction of chalk in aqueous solutions. Part 1. Deformation behavior and chemistry, in Water-Rock Interactions, Ore Deposits, and Environmental Geochemistry: A tribute to David A. Crerar, Hellmann R., Wood S.A. (eds.), Geochemical Society, pp. 129-152.
  • Helmstetter A., Sornette D., Grasso J.-R., Andersen J.V., Gluzman S., Pisarenko V. (2004) Slider-block friction model for landslides: implication for prediction of mountain collapse, J. Geophys. Res. 109, B02409, doi: 10.1029/2002JB002160.
  • Helmstetter A., Shaw B.E. (2007) Relation between stress heterogeneity and aftershock rate in the rate-and-state model, J. Geophys. Res. 111, B07304, doi: 10.1029/2005JB004077.
  • Heslot F., Baumberger T., Perrin B., Caroli B., Caroli C. (1994) Creep, stick-slip, and dry-friction dynamics: Experiments and a heuristic model, Phys. Rev. E, 49, 4973-4988. [CrossRef]
  • Hickman S.H., Evans B. (1991) Experimental pressure solution in halite: the effect of grain/ interphase boundary structure, J. Geol. Soc. London 148, 549-560. [CrossRef]
  • Johnson K.M., Bürgmann R., Larson K. (2006) Frictional properties on the San Andreas Fault near Parkfield, California, inferred from models of afterslip following the 2004 earthquake, B. Seismol. Soc. Am. 96, S321-S338. [CrossRef]
  • Karcz Z., Aharonov E., Ertas D., Polizzotti R., Scholz C.H. (2006) Stability of a sodium chloride indenter contact undergoing pressure solution, Geology 34, 61-63, doi: 10.1130/G21722.1.
  • Kennedy B.M., Kharaka Y.K., Evans W.C., Ellwood A., De Paolo D.J., Thordsen J., Ambats G.Mariner R.H. (1997) Mantle fluids in the San Andreas fault system, California, Science 278, 1278-1280. [CrossRef]
  • Kitagawa Y., Fujimori K., Koizumi N. (2002) Temporal change in permeability of the rocks estimated from repeated water injection experiments near the Nojima fault in Awaji Island Japan, Geophys. Res. Lett. 29, doi: 10.1029/2001GL014030.
  • Knipe R.J. (1992) Faulting processes and fault seal, in Faulting and fault sealing and fluid flow in hydrocarbon reservoirs, Jones G., Fisher Q.J., Knipe R.J. (eds.), Geological Society London Special Publication 147, 325-342.
  • Labaume P., Moretti I. (2001) Diagenesis-dependence of cataclastic thrust fault zone sealing in sandstones. Example from the Bolivian Sub-Andean Zone, J. Struct. Geol. 23, 1659-1675. [CrossRef]
  • Labaume P., Carrio-Schaffhauser E., Gamond J.F., Renard F. (2004) Deformation mechanisms and fluid-driven mass transfers in the recent fault zones of the Corinth Rift (Greece), C.R. Acad. Sci. 336, 4-5, 375-383.
  • Lehner F.K. (1995) A model for intergranular pressure solution in open systems, Tectonophysics 245, 153-170. [CrossRef]
  • Leroy Y.M., Heidug W.K. (1994) Geometrical evolution of stressed and curved solid-fluid phase boundaries 2. Stability of cylindrical pores, J. Geophys. Res. 99, 517-530. [CrossRef]
  • Le Guen Y., Renard F., Hellmann R., Brosse E., Collombet M., Tisserand D., Gratier J.-P. (2007) Enhanced deformation of lime-stone and sandstone in the presence of high pC02 fluids, J. Geophys. Res. 112, B05421, doi: 10.1029/2006JB004637.
  • Li Y.G., Vidale J.E., Day S.M., Oglesby D.D., Cochran E. (2003) Postseismic fault healing on the rupture zone of the 1999 M 7.1 Hector Mine, California, earthquake, B. Seismol. Soc. Am. 93, 854-869. [CrossRef]
  • Li Y.G., PoChen E., Cochran E., Vidale J.E. (2007) Seismic velocity variations on the San Andreas fault caused by the 2004 M6 Parkfield Earthquake and their implication, Earth Planets Space 59, 21-31.
  • Lockner D., Evans B. (1995) Densification of quartz powder and reduction of conductivity at 700C˚, J. Geophys. Res. 100, 13081-13092. [CrossRef]
  • Lockner D.A., Tanaka H., Ito H., Ikeda R., Omura K., Naka H. (2009) Geometry of the Nojima Fault at Nojima-Hirabayashi, Japan - I. A Simple Damage Structure Inferred from Borehole Core Permeability, Pure Appl. Geophys. 166, 1649-1667, doi: 10.1007/s00024-009-0515-0.
  • Marquer D., Burkhard M. (1992) Fluid circulation, progressive deformation and mass-transfer processes in the upper crust: the example of basement-cover relationships in the external crystalline massifs, Switzerland, J. Struct. Geol. 14, 1047-1057. [CrossRef]
  • Marone C. (1998) Laboratory-derived friction laws and their application to seismic faulting, Annu. Rev. Earth Pl. Sc. 26, 643-696. [CrossRef]
  • McEwen T.J. (1978) Diffusional mass transfer process in pitted pebble conglomerates, Contrib. Mineral. Petr. 67, 405-415. [CrossRef]
  • Miller S.A., Collettini C., Chiaraluce L., Cocco M., Barchi M., Kaus B.J.P. (2004) Aftershocks driven by a high-pressure CO2 source at depth, Nature 427, 724-727. [CrossRef] [PubMed]
  • Moore D.E. Lockner D.A., Ito H., Ikeda R., Tanaka H., Omura K. (2009) Geometry of the Nojima Fault at Nojima-Hirabayashi, Japan - II. Microstructures and their Implications for Permeability and Strength, Pure Appl. Geophys. 166, 1669-1691, doi: 10.1007/s00024-009-0513-2.
  • Muir-Wood R., King G. (1993) Hydrological signatures of earthquake strain, J. Geophys. Res. 98, 22035-22068. [CrossRef]
  • Niemeijer A.R., Spiers C.J. (2006) Velocity dependence of strength and healing behaviour in simulated phyllosilicate-bearing fault gouge, Tectonophysics 427, 231-253. [CrossRef]
  • Niemeijer A.R., Marone C., Elsworth D. (2008) Healing of simulated fault gouges aided by pressure solution: results from rock analogue experiments, J. Geophys. Res. 113, B04204, doi: 101029/2007JB005376.
  • Olson J.E., Laubach S.E., Lander R.H. (2009) Natural fracture characterization in tight gas sandstones: integrating mechanics and diagenesis, Am. Ass. Petrol. Bull. 93, 1-15.
  • Ortoleva P. (1994) Geochemical self-organization, Oxford University press, 411 p.
  • Paterson M.S. (2001) Relating experimental and geological rheology, Int. J. Earth Sci. 90, 157-167. [CrossRef]
  • Perrin G., Rice J.R., Zheng G. (1995) Self-healing slip pulse on a frictional surface, J. Mech. Phys. Solids 43, 1461-1495. [CrossRef] [MathSciNet]
  • Perfettini H., Avouac J.-P. (2004) Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan, J. Geophys. Res. 109, B02304, doi: 10.1029/2003JB002488.
  • Perfettini H., Avouac J.-P. (2007) Modeling afterslip and aftershocks following the 1992 Landers earthquake, J. Geophys. Res. 112, B07409, doi: 10.1029/2006JB004399.
  • Person M., Baumgartner L.P., Bos B., Connoly J.A.D., Gratier J.-P., Gueydan F., Miller S.A., Rosenberg C.L., Urai J.L., Yardley B.W.D. (2007) Fluids, Geochemical cycles and mass transport in fault zones, in Tectonics faults: agents of change on a dynamic earth, Handy M.R., Hirth G., Hovius N. (eds.), Dahlem Workshop, The MIT Press, Cambridge, Mass., USA. pp. 403-426.
  • Pfiffner O.A., Ramsay J.G. (1982) Constraints on geological rate: arguments from finite strain values of naturally deformed rocks, J. Geophys. Res. 87, 311-321. [CrossRef]
  • Pili E.B., Kennedy B.M., Conrad M.S., Gratier J.-P. (1998) Isotope constraints on the involvement of fluids in the San Andreas fault, Eos Trans. AGU 79, 17, S229-S320, Spring meeting.
  • Pili E., Poitrasson F., Gratier J.-P. (2002) Geochemical constraints on how fluids get into and out of faulted limestones from the San Andreas Fault system: the role of host rocks in feeding dynamically organized fracture networks, Chem. Geol. 190, 231-250. [CrossRef]
  • Piper J.D.A., Mesci L.B., Gürsoy H., Tatar O., Davies C.J. (2007) Paleomagnetic and rock magnetic properties of travertine: Its potential as a recorder of geomagnetic paleosecular variation, environmental change and earthquake activity in the Sicak Cermik geothermal field, Turkey, Phys. Chem. Earth 161, 50-73.
  • Pizzino L., Quattrocchi F., Cinti D., Galli G. (2004) Fluid geochemistry along the Eliki and Aigion seismogenic segments (Gulf of Corinth, Greece), C.R. Acad. Sci. 336, 367-374.
  • Prioul N., Cornet F.H., Dorbath C., Dorbath L., Ogena M., Ramos E. (2000) An induced seismicity experiment across a creeping segment of the Philippine Fault, J. Geophys. Res. 105, 13595-13612. [CrossRef]
  • Raj R. (1982) Creep in polycristalline aggregates by matter transport through a liquid phase, J. Geophys. Res. 87, 4731-4739. [CrossRef]
  • Reid H.F. (1910) The mechanics of the earthquake, in The California Earthquake of April 18, 1906 Report of the State Earthquake Investigation commission, Vol. 2, Carnegie Institute Washington Publ. 87, 192 p.
  • Renard F., Gratier J.-P., Ortoleva P., Brosse E., Bazin B. (1998) Experimental evidence for self-organization during reactive fluid flow in a porous medium, Geophys. Res. Lett. 25, 385-388. [CrossRef]
  • Renard F., Gratier J.-P., Jamveit B. (2000) Kinetics of crack-sealing, intergranular pressure solution and compaction around active faults, J. Struct. Geol. 22, 1395-1407. [CrossRef]
  • Renard F., Bernard D., Thibault X., Boller E. (2004) Synchrotron 3D microtomography of halite aggregates during experimental pressure solution creep and evolution of the permeability, Geophys. Res. Lett. 31, L07607, doi: 10.1029/2004GL019605.
  • Rice J.R. (1983) Constitutive relations for faults slip and earthquake instabilities, Pure Appl. Geophys. 121, 443-475. [CrossRef]
  • Rice J.R., Ruina A.L. (1983) Stability of steady frictional slipping, J. Appl. Mech. 105, 343-349. [CrossRef]
  • Rice J.R. (1992) Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault, in Fault Mechanics and Transport Properties of Rocks, Academic Press, pp. 475-503.
  • Rojstaczer S., Wolf S. (1992) Permeability changes associated with large earthquakes an example from Loma Prieta California, Geology 20, 211-214. [CrossRef]
  • Ruina A. (1983) Slip instability and state variable friction laws, J. Geophys. Res. 88, 10359-10370. [CrossRef]
  • Rutter E.H. (1976) The kinetics of rock deformation by pressure solution, Philos. T. Roy. Soc. London 283, 203-219. [CrossRef]
  • SARPP (2003) Structural Analysis and Rock Physics Program, Leroy Y.M. and Gueydan F., LMS, École Polytechnique, France.
  • Scholz C.H. (1998) Earthquakes and friction laws, Nature 391, 37-42. [CrossRef]
  • Sibson R.H., Robert F., Poulsen H.H.A.F. (1988) High Angle Faults, Fluid Pressure Cycling and Mesothermal Gold-Quartz Deposits, Geology 16, 551-555. [CrossRef]
  • Sleep N.H., Blanpied M.L. (1994) Ductile creep and compaction: a mechanism for transiently increasing fluid pressure in mostly sealed fault zones, Pure Appl. Geophys. 143, 9-40. [CrossRef]
  • Spiers C.J.S., De Meer S., Niemeijer A.R., Zhang X. (2004), Kinetics of rock deformation by pressure solution and the role of thin aqueous films, in Physisochemistry of water in geological and biological systems: structures and properties of thin aquous films, Frontiers Sci. Ser., Vol. 44, Nakashima S. et al. (eds.), pp. 129-158, Univ. Acad. Press, Tokyo.
  • Sykes L.R., Menke W. (2006) Repeat times of large earthquakes: Implications for earthquake mechanics and long-term prediction, B. Seismol. Soc. Am. 96, 1569-1596. [CrossRef]
  • Tada R., Siever R. (1986) Experimental knife-edge pressure solution of halite, Geochim. Cosmochim. Ac. 50, 29-36. [CrossRef]
  • Tenthorey E., Cox S.F., Todd H.F. (2003) Evolution of strength recovery and permeability during fluid-rock reaction in experimental fault zones, Earth Planet. Sc. Lett. 206, 161-172. [CrossRef]
  • Titus S.J., DeMets C., Tikoff B. (2006) Thirty-five-year creep rates for the creeping segment of the San Andreas fault and the effects of the 2004 Parkfield earthquake: Constraints from alignment arrays, continuous global positioning system, and creepmeters, B. Seismol. Soc. Am. 96, S250-S268, doi: 10.1785/0120050811.
  • Urai J.L., Spiers C.J., Zwart H.J., Lister G.S. (1986) Weakening of rock-salt by water during long-term creep, Nature 324, 554-557. [CrossRef]
  • Weyl P.K. (1959) Pressure solution and the force of crystallization: a phenomenological theory, J. Geophys. Res. 64, 2001-2025. [CrossRef]
  • Worthington S.R.H., Ford D.C. (2009) Self-Organized Permeability in Carbonate Aquifers, Ground Water 47, 326-336. [CrossRef] [PubMed]
  • Zhu W., David C., Wong T. (1995) Network modeling of permeability evolution during cementation and hot isostatic pressing, J. Geophys. Res. 100, 15,451-15,464.
  • Zhu W., Wong T. (1997) The transition from brittle faulting to cataclastic flow: Permeability evolution, J. Geophys. Res. 102, 3027-3041. [CrossRef]
  • Zubtsov S., Renard F., Gratier J.-P., Guiguet R., Dysthe D.K., Traskine V.Y. (2004) Experimental pressure solution creep of polymineralic aggregates, Tectonophysics 385, 45-57. [CrossRef]
  • Yielding G., Freeman B., Needham D.T. (1997) Quantitative Fault Seal Prediction, AAPG Bull. 81, 897-917.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.