Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Numéro 3, May-June 2011
Page(s) 491 - 506
DOI https://doi.org/10.2516/ogst/2010014
Publié en ligne 22 février 2011
  • Andreani M., Boullier A.-M., Gratier J.-P. (2005) Development of schistosity by dissolution-crystallization in a Californian serpentinite gouge, J. Struct. Geol. 27, 2256-2267. [CrossRef] [Google Scholar]
  • Bazin B., Bieber M.T., Roque C., Bouteca M. (1996) Improvement in the characterization of the acid wormholing by in-situ Xray CT visualizations, International Symposium on Formation Damage Control, Lafayette Louisiana USA, SPE paper 31073. [Google Scholar]
  • Beeler N.M., Hickman S.H. (2004) Stress-induced, time-dependent fracture closure at hydrothermal conditions, J. Geophys. Res. 109, B02211, doi: 10.1029/2002JB001782. [Google Scholar]
  • Bérest P., Blum P.A., Charpentier J.P., Gharbi H., Valès F. (2004) Fluage du sel gemme sous très faibles charges, creep of rock salt under very small loadings, C.R. Geosciences 336, 15, 1337-1344. [CrossRef] [Google Scholar]
  • Benedicto A., Plagnes V., Vergély P., Flotté N., Schultz R.A. (2008) Fault and fluid interactions in a rifted margin: integrated study of calcite-sealed fault-related structures (southern Corinth margin), Geol. Soc. London, Spec. Pub. 299, 257-275. [CrossRef] [Google Scholar]
  • Boullier A.-M., Fujimoto K., Ito H., Ohtani T., Keulen N., Fabbri O., Amitrano D., Dubois M., Pezard P. (2004) Structural evolution of the Nojima fault (Awaji Island, Japan) revisited from the GSJ drill hole at Hirabayashi, Earth Planets Space 56, 1233-1240. [Google Scholar]
  • Bourouis S., Cornet F.H. (2009) Microseismic activity and fluid fault interactions: some results from the Corinth Rift Laboratory (CRL), Greece, Geophys. J. Int. 178, 561-580, doi: 10.1111/j.1365-246X.2009.04148.x. [Google Scholar]
  • Bouvier J.D., Kaarssijpesteijn C.H., Kluesner D.F., Onyejekwe C.C., Vanderpal R.C. (1989) 3 dimentional seismic interpretation and fault sealing investigation, Nun river field, Nigeria, AAPG Bull. 73, 1397-1414. [Google Scholar]
  • Brantley S., Evans B., Hickman S.H., Crerar D.A. (1990) Healing of microcracks in quartz: implications for fluid flow, Geology 18, 136-139. [CrossRef] [Google Scholar]
  • Brenguier F., Campillo M., Hadziioannou C., Shapiro N.M., Nadeau R.M., Larose E. (2008) Postseismic relaxation along the San Andreas fault in the Parkfield area investigated with continuous seismological observations, Science 321, 1478-1481. [Google Scholar]
  • Bretan P., Yielding G., Jones H. (2003) Using calibrated shale gouge ratio to estimate hydrocarbon column heights, AAPG Bull. 87, 397-413. [CrossRef] [Google Scholar]
  • Cox S.F., Paterson M.S. (1991) Experimental dissolution-precipitation creep in quartz aggregates at high-temperatures, Geophys. Res. Lett. 18, 1401-1404. [CrossRef] [Google Scholar]
  • De Meer S., Spiers C.J., Peach C.J. (2000) Kinetics of precipitation of gypsum and implications for pressure-solution creep, J. Geol. Soc. London 157, 269-281. [CrossRef] [Google Scholar]
  • Dewers T., Ortoleva P. (1990) A coupled reaction/transport/mechanical model for intergranular pressure solution stylolites, and differential compaction and cementation in clean sandstones, Geochim. Cosmochim. Ac. 54, 1609-1625. [Google Scholar]
  • Dietrich J.H. (1979) Modeling of rock friction 1 experimental results and constitutive equations, J. Geophys. Res. 84, 2161-2168. [CrossRef] [Google Scholar]
  • Dieterich J.H. (1981) Constitutive properties of faults with simulated gouge, in Mechanical Behavior of Crustal Rocks, Carter N.L., Friedman M., Logan J.M., Sterns D.W. (eds.), Am. Geophys. Union Monogr. 24, 103-120. [Google Scholar]
  • Dieterich J.H. (1994) A constitutive law for rate of earthquake production and its application to earthquake clustering, J. Geophys. Res. 99, 2601-2618. [CrossRef] [Google Scholar]
  • Doan M.-L., Brodsky E.E., Kano Y., Ma K.-F. (2006) In situ measurements of the hydraulic diffusivity of the active Chelungpu fault Taiwan, Geophys. Res. Lett. 33, 16. [Google Scholar]
  • Evans J.P., Chester F.M. (1995) Fluid-rock interaction in faults of the San Andreas system: inference from the San Gabriel fault rock geochemistry, J. Geophys. Res. 100, 13,007-13,020. [Google Scholar]
  • Freed A.M. (2007) After slip (and only after slip) following the 2004 Parkfield, California earthquake, Geophys. Res. Lett. 34, LO6312, doi: 101029/2006GL029155. [Google Scholar]
  • Fisher Q.J., Knipe R.J. (2001) The permeability of faults within siliciclastic petroleum reservoirs of the North Sea and Norwegian Continental Shelf, Mar. Petrol. Geol. 18, 1063-1081. [CrossRef] [Google Scholar]
  • Dysthe K., Renard F., Feder J., Jamtveit B., Meakin P., Jøssang T. (2003) High resolution measurements of pressure solution creep, Phys. Rev. E 68, 011603, doi: 10.1103/PhysRevE.68.011603. [Google Scholar]
  • Elkhoury J.E., Brodsky E.E., Agnew D.A. (2006) Seismic waves increase permeability, Nature 441, 1135-1138, doi: 10.1038/nature04798. [Google Scholar]
  • Gratier J.-P., Vialon P. (1980) Deformation pattern in a heterogeneous material, folded and cleaved sedimentary cover immediately overlying a crystalline basement (Oisans, French Alps), Tectonophysics 65, 151-180. [CrossRef] [Google Scholar]
  • Gratier J.-P., Jenatton L. (1984) Deformation by solution - deposition and reequilibration of fluid inclusions in crystals depending on temperature, internal pressure and stress, J. Struct. Geol. 5, 329-339. [CrossRef] [Google Scholar]
  • Gratier J.-P., Guiguet R. (1986) Experimental pressure solution deposition on quartz grains, the crucial effect of the nature of the fluid, J. Struct. Geol. 8, 845-56. [Google Scholar]
  • Gratier J.-P. (1993) Experimental pressure solution of halite by an indenter technique, Geophys. Res. Lett. 20, 1647-1650. [CrossRef] [Google Scholar]
  • Gratier J.-P., Renard F., Labaume P. (1999) How pressure solution and fractures interact in the upper crust to make it behave in both a brittle and viscous manner, J. Struct. Geol. 21, 1189-1197. [CrossRef] [Google Scholar]
  • Gratier J.-P., Favreau P., Renard F. (2003) Modeling fluid transfer along Californian faults when integrating pressure solution crack sealing and compaction process, J. Geophys. Res. 108, 28-52. [Google Scholar]
  • Gratier J.-P., Gueydan F. (2007) Deformation in the presence of fluids and mineral reactions: effect of fracturing and fluid-rocks interaction on seismic cycle, in Tectonic Faults, agent of change on a dynamic earth, Handy M.R., Hirth G., Hovius N. (eds.), Dahlem Workshop, The MIT Press, Cambridge, Mass., USA, pp. 319-356. [Google Scholar]
  • Gratier J.-P., Guiguet R., Renard F., Jenatton L. (2009) A pressure solution creep law for quartz from indentation experiments, J. Geophys. Res. 114, B03403, doi: 10.1029/2008JB005652. [Google Scholar]
  • Guéguen Y., Palciauskas V. (1994) Introduction to the physics of rocks, Princeton University Press editor, 299 p. [Google Scholar]
  • Gueydan F., Leroy Y.M., Jolivet L., Agard P. (2003) Analysis of continental midcrustal strain localization induced by reaction-softening and microfracturing, J. Geophys. Res. 108, 2064, doi: 10.1029/2001JB000611. [Google Scholar]
  • Handy M.R. (1989) Deformation regime and the rheological evolution of fault zones in the lithosphere. The effect of pressure, temperature, grain size and time, Tectonophysics 163, 119-159. [CrossRef] [Google Scholar]
  • Handy M.R., Hirth G., Hovius N. (2007) Introduction, Tectonic fault, in Tectonic faults agent of change on dynamic earth, Handy M.R., Hirth G., Hovius N. (eds.), Dahlem Workshop, The MIT Press, Cambridge, Mass., USA, pp. 1-8. [Google Scholar]
  • Hellmann R., Gratier J.-P., Chen T. (1998) Mineral-water interactions and stress: pressure solution of halite aggregates, Water Rock Interaction 9, 777-780. [Google Scholar]
  • Hellmann R., Renders P.J.N., Gratier J.-P., Guiguet R. (2002) Experimental pressure solution compaction of chalk in aqueous solutions. Part 1. Deformation behavior and chemistry, in Water-Rock Interactions, Ore Deposits, and Environmental Geochemistry: A tribute to David A. Crerar, Hellmann R., Wood S.A. (eds.), Geochemical Society, pp. 129-152. [Google Scholar]
  • Helmstetter A., Sornette D., Grasso J.-R., Andersen J.V., Gluzman S., Pisarenko V. (2004) Slider-block friction model for landslides: implication for prediction of mountain collapse, J. Geophys. Res. 109, B02409, doi: 10.1029/2002JB002160. [Google Scholar]
  • Helmstetter A., Shaw B.E. (2007) Relation between stress heterogeneity and aftershock rate in the rate-and-state model, J. Geophys. Res. 111, B07304, doi: 10.1029/2005JB004077. [Google Scholar]
  • Heslot F., Baumberger T., Perrin B., Caroli B., Caroli C. (1994) Creep, stick-slip, and dry-friction dynamics: Experiments and a heuristic model, Phys. Rev. E, 49, 4973-4988. [CrossRef] [Google Scholar]
  • Hickman S.H., Evans B. (1991) Experimental pressure solution in halite: the effect of grain/ interphase boundary structure, J. Geol. Soc. London 148, 549-560. [CrossRef] [Google Scholar]
  • Johnson K.M., Bürgmann R., Larson K. (2006) Frictional properties on the San Andreas Fault near Parkfield, California, inferred from models of afterslip following the 2004 earthquake, B. Seismol. Soc. Am. 96, S321-S338. [CrossRef] [Google Scholar]
  • Karcz Z., Aharonov E., Ertas D., Polizzotti R., Scholz C.H. (2006) Stability of a sodium chloride indenter contact undergoing pressure solution, Geology 34, 61-63, doi: 10.1130/G21722.1. [Google Scholar]
  • Kennedy B.M., Kharaka Y.K., Evans W.C., Ellwood A., De Paolo D.J., Thordsen J., Ambats G.Mariner R.H. (1997) Mantle fluids in the San Andreas fault system, California, Science 278, 1278-1280. [CrossRef] [Google Scholar]
  • Kitagawa Y., Fujimori K., Koizumi N. (2002) Temporal change in permeability of the rocks estimated from repeated water injection experiments near the Nojima fault in Awaji Island Japan, Geophys. Res. Lett. 29, doi: 10.1029/2001GL014030. [Google Scholar]
  • Knipe R.J. (1992) Faulting processes and fault seal, in Faulting and fault sealing and fluid flow in hydrocarbon reservoirs, Jones G., Fisher Q.J., Knipe R.J. (eds.), Geological Society London Special Publication 147, 325-342. [Google Scholar]
  • Labaume P., Moretti I. (2001) Diagenesis-dependence of cataclastic thrust fault zone sealing in sandstones. Example from the Bolivian Sub-Andean Zone, J. Struct. Geol. 23, 1659-1675. [CrossRef] [Google Scholar]
  • Labaume P., Carrio-Schaffhauser E., Gamond J.F., Renard F. (2004) Deformation mechanisms and fluid-driven mass transfers in the recent fault zones of the Corinth Rift (Greece), C.R. Acad. Sci. 336, 4-5, 375-383. [Google Scholar]
  • Lehner F.K. (1995) A model for intergranular pressure solution in open systems, Tectonophysics 245, 153-170. [CrossRef] [Google Scholar]
  • Leroy Y.M., Heidug W.K. (1994) Geometrical evolution of stressed and curved solid-fluid phase boundaries 2. Stability of cylindrical pores, J. Geophys. Res. 99, 517-530. [CrossRef] [Google Scholar]
  • Le Guen Y., Renard F., Hellmann R., Brosse E., Collombet M., Tisserand D., Gratier J.-P. (2007) Enhanced deformation of lime-stone and sandstone in the presence of high pC02 fluids, J. Geophys. Res. 112, B05421, doi: 10.1029/2006JB004637. [Google Scholar]
  • Li Y.G., Vidale J.E., Day S.M., Oglesby D.D., Cochran E. (2003) Postseismic fault healing on the rupture zone of the 1999 M 7.1 Hector Mine, California, earthquake, B. Seismol. Soc. Am. 93, 854-869. [CrossRef] [Google Scholar]
  • Li Y.G., PoChen E., Cochran E., Vidale J.E. (2007) Seismic velocity variations on the San Andreas fault caused by the 2004 M6 Parkfield Earthquake and their implication, Earth Planets Space 59, 21-31. [Google Scholar]
  • Lockner D., Evans B. (1995) Densification of quartz powder and reduction of conductivity at 700C˚, J. Geophys. Res. 100, 13081-13092. [CrossRef] [Google Scholar]
  • Lockner D.A., Tanaka H., Ito H., Ikeda R., Omura K., Naka H. (2009) Geometry of the Nojima Fault at Nojima-Hirabayashi, Japan - I. A Simple Damage Structure Inferred from Borehole Core Permeability, Pure Appl. Geophys. 166, 1649-1667, doi: 10.1007/s00024-009-0515-0. [Google Scholar]
  • Marquer D., Burkhard M. (1992) Fluid circulation, progressive deformation and mass-transfer processes in the upper crust: the example of basement-cover relationships in the external crystalline massifs, Switzerland, J. Struct. Geol. 14, 1047-1057. [CrossRef] [Google Scholar]
  • Marone C. (1998) Laboratory-derived friction laws and their application to seismic faulting, Annu. Rev. Earth Pl. Sc. 26, 643-696. [Google Scholar]
  • McEwen T.J. (1978) Diffusional mass transfer process in pitted pebble conglomerates, Contrib. Mineral. Petr. 67, 405-415. [CrossRef] [Google Scholar]
  • Miller S.A., Collettini C., Chiaraluce L., Cocco M., Barchi M., Kaus B.J.P. (2004) Aftershocks driven by a high-pressure CO2 source at depth, Nature 427, 724-727. [CrossRef] [PubMed] [Google Scholar]
  • Moore D.E. Lockner D.A., Ito H., Ikeda R., Tanaka H., Omura K. (2009) Geometry of the Nojima Fault at Nojima-Hirabayashi, Japan - II. Microstructures and their Implications for Permeability and Strength, Pure Appl. Geophys. 166, 1669-1691, doi: 10.1007/s00024-009-0513-2. [Google Scholar]
  • Muir-Wood R., King G. (1993) Hydrological signatures of earthquake strain, J. Geophys. Res. 98, 22035-22068. [Google Scholar]
  • Niemeijer A.R., Spiers C.J. (2006) Velocity dependence of strength and healing behaviour in simulated phyllosilicate-bearing fault gouge, Tectonophysics 427, 231-253. [CrossRef] [Google Scholar]
  • Niemeijer A.R., Marone C., Elsworth D. (2008) Healing of simulated fault gouges aided by pressure solution: results from rock analogue experiments, J. Geophys. Res. 113, B04204, doi: 101029/2007JB005376. [Google Scholar]
  • Olson J.E., Laubach S.E., Lander R.H. (2009) Natural fracture characterization in tight gas sandstones: integrating mechanics and diagenesis, Am. Ass. Petrol. Bull. 93, 1-15. [Google Scholar]
  • Ortoleva P. (1994) Geochemical self-organization, Oxford University press, 411 p. [Google Scholar]
  • Paterson M.S. (2001) Relating experimental and geological rheology, Int. J. Earth Sci. 90, 157-167. [CrossRef] [Google Scholar]
  • Perrin G., Rice J.R., Zheng G. (1995) Self-healing slip pulse on a frictional surface, J. Mech. Phys. Solids 43, 1461-1495. [CrossRef] [MathSciNet] [Google Scholar]
  • Perfettini H., Avouac J.-P. (2004) Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan, J. Geophys. Res. 109, B02304, doi: 10.1029/2003JB002488. [Google Scholar]
  • Perfettini H., Avouac J.-P. (2007) Modeling afterslip and aftershocks following the 1992 Landers earthquake, J. Geophys. Res. 112, B07409, doi: 10.1029/2006JB004399. [Google Scholar]
  • Person M., Baumgartner L.P., Bos B., Connoly J.A.D., Gratier J.-P., Gueydan F., Miller S.A., Rosenberg C.L., Urai J.L., Yardley B.W.D. (2007) Fluids, Geochemical cycles and mass transport in fault zones, in Tectonics faults: agents of change on a dynamic earth, Handy M.R., Hirth G., Hovius N. (eds.), Dahlem Workshop, The MIT Press, Cambridge, Mass., USA. pp. 403-426. [Google Scholar]
  • Pfiffner O.A., Ramsay J.G. (1982) Constraints on geological rate: arguments from finite strain values of naturally deformed rocks, J. Geophys. Res. 87, 311-321. [CrossRef] [Google Scholar]
  • Pili E.B., Kennedy B.M., Conrad M.S., Gratier J.-P. (1998) Isotope constraints on the involvement of fluids in the San Andreas fault, Eos Trans. AGU 79, 17, S229-S320, Spring meeting. [Google Scholar]
  • Pili E., Poitrasson F., Gratier J.-P. (2002) Geochemical constraints on how fluids get into and out of faulted limestones from the San Andreas Fault system: the role of host rocks in feeding dynamically organized fracture networks, Chem. Geol. 190, 231-250. [CrossRef] [Google Scholar]
  • Piper J.D.A., Mesci L.B., Gürsoy H., Tatar O., Davies C.J. (2007) Paleomagnetic and rock magnetic properties of travertine: Its potential as a recorder of geomagnetic paleosecular variation, environmental change and earthquake activity in the Sicak Cermik geothermal field, Turkey, Phys. Chem. Earth 161, 50-73. [Google Scholar]
  • Pizzino L., Quattrocchi F., Cinti D., Galli G. (2004) Fluid geochemistry along the Eliki and Aigion seismogenic segments (Gulf of Corinth, Greece), C.R. Acad. Sci. 336, 367-374. [Google Scholar]
  • Prioul N., Cornet F.H., Dorbath C., Dorbath L., Ogena M., Ramos E. (2000) An induced seismicity experiment across a creeping segment of the Philippine Fault, J. Geophys. Res. 105, 13595-13612. [CrossRef] [Google Scholar]
  • Raj R. (1982) Creep in polycristalline aggregates by matter transport through a liquid phase, J. Geophys. Res. 87, 4731-4739. [CrossRef] [Google Scholar]
  • Reid H.F. (1910) The mechanics of the earthquake, in The California Earthquake of April 18, 1906 Report of the State Earthquake Investigation commission, Vol. 2, Carnegie Institute Washington Publ. 87, 192 p. [Google Scholar]
  • Renard F., Gratier J.-P., Ortoleva P., Brosse E., Bazin B. (1998) Experimental evidence for self-organization during reactive fluid flow in a porous medium, Geophys. Res. Lett. 25, 385-388. [CrossRef] [Google Scholar]
  • Renard F., Gratier J.-P., Jamveit B. (2000) Kinetics of crack-sealing, intergranular pressure solution and compaction around active faults, J. Struct. Geol. 22, 1395-1407. [Google Scholar]
  • Renard F., Bernard D., Thibault X., Boller E. (2004) Synchrotron 3D microtomography of halite aggregates during experimental pressure solution creep and evolution of the permeability, Geophys. Res. Lett. 31, L07607, doi: 10.1029/2004GL019605. [Google Scholar]
  • Rice J.R. (1983) Constitutive relations for faults slip and earthquake instabilities, Pure Appl. Geophys. 121, 443-475. [CrossRef] [Google Scholar]
  • Rice J.R., Ruina A.L. (1983) Stability of steady frictional slipping, J. Appl. Mech. 105, 343-349. [CrossRef] [Google Scholar]
  • Rice J.R. (1992) Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault, in Fault Mechanics and Transport Properties of Rocks, Academic Press, pp. 475-503. [Google Scholar]
  • Rojstaczer S., Wolf S. (1992) Permeability changes associated with large earthquakes an example from Loma Prieta California, Geology 20, 211-214. [CrossRef] [Google Scholar]
  • Ruina A. (1983) Slip instability and state variable friction laws, J. Geophys. Res. 88, 10359-10370. [CrossRef] [Google Scholar]
  • Rutter E.H. (1976) The kinetics of rock deformation by pressure solution, Philos. T. Roy. Soc. London 283, 203-219. [Google Scholar]
  • SARPP (2003) Structural Analysis and Rock Physics Program, Leroy Y.M. and Gueydan F., LMS, École Polytechnique, France. [Google Scholar]
  • Scholz C.H. (1998) Earthquakes and friction laws, Nature 391, 37-42. [Google Scholar]
  • Sibson R.H., Robert F., Poulsen H.H.A.F. (1988) High Angle Faults, Fluid Pressure Cycling and Mesothermal Gold-Quartz Deposits, Geology 16, 551-555. [CrossRef] [Google Scholar]
  • Sleep N.H., Blanpied M.L. (1994) Ductile creep and compaction: a mechanism for transiently increasing fluid pressure in mostly sealed fault zones, Pure Appl. Geophys. 143, 9-40. [CrossRef] [Google Scholar]
  • Spiers C.J.S., De Meer S., Niemeijer A.R., Zhang X. (2004), Kinetics of rock deformation by pressure solution and the role of thin aqueous films, in Physisochemistry of water in geological and biological systems: structures and properties of thin aquous films, Frontiers Sci. Ser., Vol. 44, Nakashima S. et al. (eds.), pp. 129-158, Univ. Acad. Press, Tokyo. [Google Scholar]
  • Sykes L.R., Menke W. (2006) Repeat times of large earthquakes: Implications for earthquake mechanics and long-term prediction, B. Seismol. Soc. Am. 96, 1569-1596. [CrossRef] [Google Scholar]
  • Tada R., Siever R. (1986) Experimental knife-edge pressure solution of halite, Geochim. Cosmochim. Ac. 50, 29-36. [CrossRef] [Google Scholar]
  • Tenthorey E., Cox S.F., Todd H.F. (2003) Evolution of strength recovery and permeability during fluid-rock reaction in experimental fault zones, Earth Planet. Sc. Lett. 206, 161-172. [CrossRef] [Google Scholar]
  • Titus S.J., DeMets C., Tikoff B. (2006) Thirty-five-year creep rates for the creeping segment of the San Andreas fault and the effects of the 2004 Parkfield earthquake: Constraints from alignment arrays, continuous global positioning system, and creepmeters, B. Seismol. Soc. Am. 96, S250-S268, doi: 10.1785/0120050811. [Google Scholar]
  • Urai J.L., Spiers C.J., Zwart H.J., Lister G.S. (1986) Weakening of rock-salt by water during long-term creep, Nature 324, 554-557. [CrossRef] [PubMed] [Google Scholar]
  • Weyl P.K. (1959) Pressure solution and the force of crystallization: a phenomenological theory, J. Geophys. Res. 64, 2001-2025. [Google Scholar]
  • Worthington S.R.H., Ford D.C. (2009) Self-Organized Permeability in Carbonate Aquifers, Ground Water 47, 326-336. [CrossRef] [PubMed] [Google Scholar]
  • Zhu W., David C., Wong T. (1995) Network modeling of permeability evolution during cementation and hot isostatic pressing, J. Geophys. Res. 100, 15,451-15,464. [Google Scholar]
  • Zhu W., Wong T. (1997) The transition from brittle faulting to cataclastic flow: Permeability evolution, J. Geophys. Res. 102, 3027-3041. [Google Scholar]
  • Zubtsov S., Renard F., Gratier J.-P., Guiguet R., Dysthe D.K., Traskine V.Y. (2004) Experimental pressure solution creep of polymineralic aggregates, Tectonophysics 385, 45-57. [CrossRef] [Google Scholar]
  • Yielding G., Freeman B., Needham D.T. (1997) Quantitative Fault Seal Prediction, AAPG Bull. 81, 897-917. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.