Dossier: Chemical Reaction Modelling of Refining Processes
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Numéro 3, May-June 2011
Dossier: Chemical Reaction Modelling of Refining Processes
Page(s) 423 - 435
Publié en ligne 7 octobre 2010
  • Froment G.F. (1991) Kinetic Modeling of Complex Catalytic Reactions, Revue de l’Institut francais du pétrole 46, 4, 491-500. [Google Scholar]
  • Verstraete J. (1997) Kinetische studie van de katalytische reforming van nafta over een Pt-Sn/Al2O3 katalysator, PhD Thesis, Ghent University, Ghent. [Google Scholar]
  • Schweitzer J.M., Galtier P., Schweich D. (1999) A single events kinetic model for the hydrocracking of paraffins in a three-phase reactor, Chem. Eng. Sci. 54, 13-14, 2441-2452. [Google Scholar]
  • Dewachtere N.V., Santaella F., Froment G.F. (1999) Application of a single-event kinetic model in the simulation of an industrial riser reactor for the catalytic cracking of vacuum gas oil, Chem. Eng. Sci. 54, 15-16, 3653-3660. [Google Scholar]
  • Van Engelandt W. (1998) Reformuleren van Nafta door Selectieve Hydrocracking, PhD Thesis, Ghent University, Ghent. [Google Scholar]
  • Klinke D.J., Broadbelt L.J. (1999) Construction of a mechanistic model of Fischer-Tropsch synthesis on Ni(111) and Co(0001) surfaces, Chem. Eng. Sci. 54, 15-16, 3379-3389. [Google Scholar]
  • Storsaeter S., Chen D., Holmen A. (2006) Microkinetic modelling of the formation of C1 and C2 products in the Fischer-Tropsch synthesis over cobalt catalysts, Surf. Sci. 600, 10, 2051-2063. [Google Scholar]
  • Shustorovich E., Sellers H. (1998) The UBI-QEP method: a practical theoretical approach to understanding chemistry on transition metal surfaces, Surf. Sci. Rep. 31, 1-3, 5-119. [Google Scholar]
  • Lozano-Blanco G., Thybaut J.W., Galtier P., Surla K., Marin G.B. (2006) Fischer-Tropsch synthesis: development of a microkinetic model for metal catalysis, Oil Gas Sci. Technol. – Rev. IFP 61, 4, 489-496. [CrossRef] [Google Scholar]
  • Temkin O.N., Zeigarnik A.V., Kuz’min A.E., Bruk L.G., Slivinskii E.V. (2002) Construction of the reaction networks for heterogeneous catalytic reactions: Fischer-Tropsch synthesis and related reactions, Russ. Chem. B+ 51, 1, 1-36. [CrossRef] [Google Scholar]
  • Dry M.E. (2004) Present and future applications of the Fischer- Tropsch process, Appl. Catal. A-Gen. 276, 1-2, 1-3. [CrossRef] [Google Scholar]
  • Dry M.E., Steynberg A.P. (2004) Commercial Fischer-Tropsch process applications, Stud. Surf. Sci. Catal.: Fischer-Tropsch Technology 152, 406-481. [CrossRef] [Google Scholar]
  • Dry M.E. (2002) The Fischer-Tropsch process: 1950-2000, Catal. Today 71, 3-4, 227-241. [Google Scholar]
  • Dry M.E. (1990) The Fischer-Tropsch process - commercial aspects, Catal. Today 6, 13-206. [Google Scholar]
  • Hindermann J.P., Hutchings G.J., Kiennemann A. (1993) Mechanistic aspects of the formation of hydrocarbons and alcohols from CO hydrogenation, Catal. Rev. 35, 1, 1-127. [CrossRef] [Google Scholar]
  • Anderson R.B. (1984) The Fischer-Tropsch synthesis, Academic Press, New York. [Google Scholar]
  • Iglesia E., Reyes S.C., Madon R.J., Soled S.L. (1993) Selectivity control and catalyst design in the Fischer-Tropsch synthesis - sites, pellets, and reactors, Adv. Catal. 39, 39, 221-302. [Google Scholar]
  • Yakubovich M.N. (2002) Equations for the molecular mass distribution of hydrocarbons formed in CO hydrogenation on a cobalt-zirconium catalyst, Kinet. Catal.+ 43, 1, 67-72. [CrossRef] [Google Scholar]
  • Patzlaff J., Liu Y., Graffmann C., Gaube J. (1999) Studies on product distributions of iron and cobalt catalyzed Fischer- Tropsch synthesis, Appl. Catal. A-Gen. 186, 1-2, 109-119. [CrossRef] [Google Scholar]
  • Iglesia E., Reyes S.C., Madon R.J. (1991) Transport-enhanced alpha-olefin readsorption pathways in Ru-catalyzed hydrocarbon synthesis, J. Catal. 129, 1, 238-256. [Google Scholar]
  • Kuipers E.W., Vinkenburg I.H., Oosterbeek H. (1995) Chainlength dependence of alpha-olefin readsorption in Fischer- Tropsch synthesis, J. Catal. 152, 1, 137-146. [Google Scholar]
  • Lox E.S. (1987) De synthese van koolwaterstoffen uit koolstofmonoxyde en waterstof, PhD Thesis, Ghent University, Ghent. [Google Scholar]
  • Lox E., Coenen F., Vermeulen R., Froment G.F. (1988) A versatile bench-scale unit for kinetic-studies of catalytic reactions, Ind. Eng. Chem. Res. 27, 4, 576-580. [Google Scholar]
  • Lox E.S., Froment G.F. (1993) Kinetics of the Fischer-Tropsch reaction on a precipitated promoted iron catalyst. 1. Experimental procedure and results, Ind. Eng. Chem. Res. 32, 1, 61-70. [Google Scholar]
  • Lox E.S., Marin G.B., Degrave E., Bussiere P. (1988) Characterization of a promoted precipitated iron catalyst for Fischer-Tropsch synthesis, Appl. Catal. 40, 1-2, 197-218. [Google Scholar]
  • Froment G.F., Bischoff K.B. (1990) Chemical reactor analysis and design, 2nd ed., Wiley, New York, p. xxxiv, 664 p. [Google Scholar]
  • Lox E.S., Froment G.F. (1993) Kinetics of the Fischer-Tropsch reaction on a precipitated promoted iron catalyst. 2. Kinetic modeling, Ind. Eng. Chem. Res. 32, 1, 71-82. [Google Scholar]
  • Froment G.F. (1975) Model discrimination and parameter estimation in heterogeneous catalysis, Aiche J. 21, 6, 1041-1057. [Google Scholar]
  • Froment G.F., Hosten L.H. (1981) Catalytic kinetics: modelling, Catalysis: science and technology, Anderson J.R., Boudart M. (eds), Springer, Berlin, Vol. 2, pp. 97-170. [Google Scholar]
  • Marquardt D.W. (1963) An algorithm for least-squares estimation of non-linear parameters, J. Soc. Ind. Appl. Math. 11, 2, 431-441. [Google Scholar]
  • Rosenbrock H.H. (1960) An automatic method for finding the greatest or least value of a function, Comput. J. 3, 175-184. [Google Scholar]
  • Boggs P.T., Tolle J.W. (1989) A strategy for global convergence in a sequential quadratic-programming algorithm, SIAM J. Numer. Anal. 26, 3, 600-623. [Google Scholar]
  • [Google Scholar]
  • Claeys P., Van Steen E. (2004) Basic studies, Fischer-Tropsch Technology, Catalysis, S. i. S. S. a., Ed. Elsevier, Amsterdam, Vol. 152. [Google Scholar]
  • Overett M.J., Hill R.O., Moss J.R. (2000) Organometallic chemistry and surface science: mechanistic models for the Fischer- Tropsch synthesis, Coordin. Chem. Rev. 206, 581-605. [CrossRef] [Google Scholar]
  • Bent B.E. (1996) Mimicking aspects of heterogeneous catalysis: generating, isolating, and reacting proposed surface intermediates on single crystals in vacuum, Chem. Rev. 96, 4, 1361-1390. [CrossRef] [PubMed] [Google Scholar]
  • Toyir J., Leconte M., Niccolai G.P., Basset J.M. (1995) Hydrogenolysis and homologation of 3,3-dimethyl-1-butene on Ru/SiO2 catalyst - implications for the mechanism of carbon-carbon bond formation and cleavage on metal-surfaces, J. Catal. 152, 2, 306-312. [Google Scholar]
  • Zaera F. (2002) Selectivity in hydrocarbon catalytic reforming: a surface chemistry perspective, Appl. Catal. A-Gen. 229, 1-2, 75-91. [CrossRef] [Google Scholar]
  • Newsome D.S. (1980) The water-gas shift reaction, Catal. Rev. 21, 2, 275-318. [CrossRef] [Google Scholar]
  • Rao K.R.P.M., Huggins F.E., Mahajan V., Huffman G.P., Rao V.U.S. (1994) The role of magnetite in Fischer-Tropsch synthesis, Hyperfine Interact. 93, 1-4, 1745-1749. [Google Scholar]
  • Zhang H.B., Schrader G.L. (1985) Characterization of a fused ron catalyst for Fischer-Tropsch synthesis by in situ laser raman-spectroscopy, J. Catal. 95, 1, 325-332. [Google Scholar]
  • Rethwisch D.G., Dumesic J.A. (1986) The effect of metal-oxygen bond strength on properties of oxides. 2. Water-gas shift over bulk oxides, Appl. Catal. 21, 1, 97-109. [Google Scholar]
  • van Santen R.A., Niemantsverdriet J.W. (1995) Chemical kinetics and catalysis, Plenum Press, New York, p. xi, 280. [Google Scholar]
  • Teng B.T., Chang J., Yang J., Wang G., Zhang C.H., Xu Y.Y., Xiang H.W., Li Y.W. (2005) Water gas shift reaction kinetics in Fischer-Tropsch synthesis over an industrial Fe-Mn catalyst, Fuel 84, 7-8, 917-926. [Google Scholar]
  • Clymans P.J., Froment G.F. (1984) Computer-generation of reaction paths and rate-equations in the thermal-cracking of normal and branched paraffins, Comput. Chem. Eng. 8, 2, 137-142. [Google Scholar]
  • Svoboda G.D., Vynckier E., Debrabandere B., Froment G.F. (1995) Single-event rate parameters for paraffin hydrocracking oil a Pt/US-Y zeolite, Ind. Eng. Chem. Res. 34, 11, 3793-3800. [Google Scholar]
  • Vynckier E., Froment G.F. (1991) Modeling of the kinetics of complex processes based upon elementary steps, Kinetic and Thermodynamic Lumping of Multicomponent Mixtures, Astarita G., Sandler S.I. (eds), Elsevier, Amsterdam. [Google Scholar]
  • Feng W., Vynckier E., Froment G.F. (1993) Single-event kinetics of catalytic cracking, Ind. Eng. Chem. Res. 32, 12, 2997-3005. [Google Scholar]
  • Wauters S., Marin G.B. (2001) Computer generation of a network of elementary steps for coke formation during the thermal cracking of hydrocarbons, Chem. Eng. J. 82, 1-3, 267-279. [Google Scholar]
  • Baltanas M.A., Froment G.F. (1985) Computer-generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins on Pt-containing bifunctional catalysts, Comput. Chem. Eng. 9, 1, 71-81. [Google Scholar]
  • Mhadeshwar A.B., Wang H., Vlachos D.G. (2003) Thermodynamic consistency in microkinetic development of surface reaction mechanisms, J. Phys. Chem. B 107, 46, 12721-12733. [Google Scholar]
  • Cohen N. (1992) Thermochemistry of alkyl free-radicals, J. Phys. Chem. 96, 22, 9052-9058. [Google Scholar]
  • Cohen N. (1996) Revised group additivity values for enthalpies of formation (at 298 K) of carbon-hydrogen and carbon-hydrogenoxygen compounds, J. Phys. Chem. Ref. Data 25, 6, 1411-1481. [Google Scholar]
  • Cohen N., Benson S.W. (1993) Estimation of heats of formation of organic-compounds by additivity methods, Chem. Rev. 93, 7, 2419-2438. [Google Scholar]
  • [Google Scholar]
  • Lide D.R. (2003) CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, 84th ed., David R. Lide (ed.), CRC, Boca Raton, Fla., London, p. 1 v (various pagings). [Google Scholar]
  • Lozano-Blanco G., Thybaut J.W., Surla K., Galtier P., Marin G.B. (in preparation). [Google Scholar]
  • Boudart M., Djéga-Mariadassou G. (1984) Kinetics of heterogeneous catalytic reactions, Princeton University Press, Princeton, N.J., p. xviii, 222 p. [Google Scholar]
  • Teng B.T., Chang J., Zhang C.H., Cao D.B., Yang J., Liu Y., Guo X.H., Xiang H.W., Li Y.W. (2006) A comprehensive kinetics model of Fischer-Tropsch synthesis over an industrial Fe-Mn catalyst, Appl. Catal. A-Gen. 301, 1, 39-50. [CrossRef] [Google Scholar]
  • Yang J., Liu Y., Chang J., Wang Y.N., Bai L., Xu Y.Y., Xiang H.W., Li Y.W., Zhong B. (2003) Detailed kinetics of Fischer- Tropsch synthesis on an industrial Fe-Mn catalyst, Ind. Eng. Chem. Res. 42, 21, 5066-5090. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.